ترغب بنشر مسار تعليمي؟ اضغط هنا

PepCVAE: Semi-Supervised Targeted Design of Antimicrobial Peptide Sequences

181   0   0.0 ( 0 )
 نشر من قبل Kahini Wadhawan
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Given the emerging global threat of antimicrobial resistance, new methods for next-generation antimicrobial design are urgently needed. We report a peptide generation framework PepCVAE, based on a semi-supervised variational autoencoder (VAE) model, for designing novel antimicrobial peptide (AMP) sequences. Our model learns a rich latent space of the biological peptide context by taking advantage of abundant, unlabeled peptide sequences. The model further learns a disentangled antimicrobial attribute space by using the feedback from a jointly trained AMP classifier that uses limited labeled instances. The disentangled representation allows for controllable generation of AMPs. Extensive analysis of the PepCVAE-generated sequences reveals superior performance of our model in comparison to a plain VAE, as PepCVAE generates novel AMP sequences with higher long-range diversity, while being closer to the training distribution of biological peptides. These features are highly desired in next-generation antimicrobial design.



قيم البحث

اقرأ أيضاً

Objectives: Most cancer data sources lack information on metastatic recurrence. Electronic medical records (EMRs) and population-based cancer registries contain complementary information on cancer treatment and outcomes, yet are rarely used synergist ically. To enable detection of metastatic breast cancer (MBC), we applied a semi-supervised machine learning framework to linked EMR-California Cancer Registry (CCR) data. Materials and Methods: We studied 11,459 female patients treated at Stanford Health Care who received an incident breast cancer diagnosis from 2000-2014. The dataset consisted of structured data and unstructured free-text clinical notes from EMR, linked to CCR, a component of the Surveillance, Epidemiology and End Results (SEER) database. We extracted information on metastatic disease from patient notes to infer a class label and then trained a regularized logistic regression model for MBC classification. We evaluated model performance on a gold standard set of set of 146 patients. Results: There are 495 patients with de novo stage IV MBC, 1,374 patients initially diagnosed with Stage 0-III disease had recurrent MBC, and 9,590 had no evidence of metastatis. The median follow-up time is 96.3 months (mean 97.8, standard deviation 46.7). The best-performing model incorporated both EMR and CCR features. The area under the receiver-operating characteristic curve=0.925 [95% confidence interval: 0.880-0.969], sensitivity=0.861, specificity=0.878 and overall accuracy=0.870. Discussion and Conclusion: A framework for MBC case detection combining EMR and CCR data achieved good sensitivity, specificity and discrimination without requiring expert-labeled examples. This approach enables population-based research on how patients die from cancer and may identify novel predictors of cancer recurrence.
Antimicrobial resistance is an important public health concern that has implications in the practice of medicine worldwide. Accurately predicting resistance phenotypes from genome sequences shows great promise in promoting better use of antimicrobial agents, by determining which antibiotics are likely to be effective in specific clinical cases. In healthcare, this would allow for the design of treatment plans tailored for specific individuals, likely resulting in better clinical outcomes for patients with bacterial infections. In this work, we present the recent work of Drouin et al. (2016) on using Set Covering Machines to learn highly interpretable models of antibiotic resistance and complement it by providing a large scale application of their method to the entire PATRIC database. We report prediction results for 36 new datasets and present the Kover AMR platform, a new web-based tool allowing the visualization and interpretation of the generated models.
Current methods for viral discovery target evolutionarily conserved proteins that accurately identify virus families but remain unable to distinguish the zoonotic potential of newly discovered viruses. Here, we apply an attention-enhanced long-short- term memory (LSTM) deep neural net classifier to a highly conserved viral protein target to predict zoonotic potential across betacoronaviruses. The classifier performs with a 94% accuracy. Analysis and visualization of attention at the sequence and structure-level features indicate possible association between important protein-protein interactions governing viral replication in zoonotic betacoronaviruses and zoonotic transmission.
The Set Covering Machine (SCM) is a greedy learning algorithm that produces sparse classifiers. We extend the SCM for datasets that contain a huge number of features. The whole genetic material of living organisms is an example of such a case, where the number of feature exceeds 10^7. Three human pathogens were used to evaluate the performance of the SCM at predicting antimicrobial resistance. Our results show that the SCM compares favorably in terms of sparsity and accuracy against L1 and L2 regularized Support Vector Machines and CART decision trees. Moreover, the SCM was the only algorithm that could consider the full feature space. For all other algorithms, the latter had to be filtered as a preprocessing step.
Cryo-Electron Tomography (cryo-ET) is a new 3D imaging technique with unprecedented potential for resolving submicron structural detail. Existing volume visualization methods, however, cannot cope with its very low signal-to-noise ratio. In order to design more powerful transfer functions, we propose to leverage soft segmentation as an explicit component of visualization for noisy volumes. Our technical realization is based on semi-supervised learning where we combine the advantages of two segmentation algorithms. A first weak segmentation algorithm provides good results for propagating sparse user provided labels to other voxels in the same volume. This weak segmentation algorithm is used to generate dense pseudo labels. A second powerful deep-learning based segmentation algorithm can learn from these pseudo labels to generalize the segmentation to other unseen volumes, a task that the weak segmentation algorithm fails at completely. The proposed volume visualization uses the deep-learning based segmentation as a component for segmentation-aware transfer function design. Appropriate ramp parameters can be suggested automatically through histogram analysis. Finally, our visualization uses gradient-free ambient occlusion shading to further suppress visual presence of noise, and to give structural detail desired prominence. The cryo-ET data studied throughout our technical experiments is based on the highest-quality tilted series of intact SARS-CoV-2 virions. Our technique shows the high impact in target sciences for visual data analysis of very noisy volumes that cannot be visualized with existing techniques.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا