ترغب بنشر مسار تعليمي؟ اضغط هنا

Attenuation of slow Metal-Insulator-Metal plasmonic waveguides, from Joule absorption to roughness-induced backscattering

106   0   0.0 ( 0 )
 نشر من قبل Philippe Lalanne
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By combining analytical and numerical approaches, we theoretically investigate the effect of fabrication imperfections, e.g. roughness at metal interfaces, on nanometer metal-insulator-metal waveguides supporting slow gap-plasmon modes. Realistic devices with vapor deposition- and chemically-grown metal films are considered. We obtain quantitative predictions for the attenuations induced by absorption and by backscattering, and analytically derive how both attenuations scale with respect to the group velocity. Depending on the material parameters and fabrication quality, roughness-induced backscattering is find to be a significant additional source of attenuation for small group velocities, which is often neglected in the literature.



قيم البحث

اقرأ أيضاً

As an analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has been realized both in plasmonic metamaterial and waveguide structures. Via near-field coupling within unit cells, PIT with broadband could be pro duced by plasmonic metamaterials, which, however, has not been realized in on-chip plasmonic waveguide structures. Here, we introduce broadband PIT based on a plasmonic metal-insulator-metal (MIM) waveguide system. Utilizing the direct coupling structure, PIT emerges based on an easy-fabricated structure without gap. By tuning coupling distance, the transparent window can be continuously tuned from narrow- to broadband. Such device is promising for on-chip applications on sensing, filtering and slow light over a broad frequency range.
We introduce phase-change material Ge2Sb2Te5 (GST) into metal-insulator-metal (MIM) waveguide systems to realize chipscale plasmonic modulators and switches in the telecommunication band. Benefitting from the high contrast of optical properties betwe en amorphous and crystalline GST, the three proposed structures can act as reconfigurable and non-volatile modulators and switches with excellent modulation depth 14 dB and fast response time in nanosecond, meanwhile possessing small footprints, simple frameworks and easy fabrication. This work provides new solutions to design active devices in MIM waveguide systems, and can find potential applications in more compact all-optical circuits for information processing and storage.
124 - Y.Endoh , H.Nojiri , K.Kaneko 1998
The gigantic reduction of the electric resistivity under the applied magnetic field, CMR effect, is now widely accepted to appear in the vicinity of the insulator to metal transition of the perovskite manganites. Recently, we have discovered the firs t order transition from ferromagnetic metal to insulator in $rm La_{0.88}Sr_{0.12}MnO_3$ of the CMR manganite. This phase transition induces the tremendous increase of the resistivity under the external magnetic field just near above the phase transition temperature. We report here fairly detailed results from the systematic experiments including neutron and synchrotron X-ray scattering studies.
Nanophotonic (nanoplasmonic) structures confine, guide, and concentrate light on the nanoscale. Advancement of nanophotonics critically depends on active nanoscale control of these phenomena. Localized control of the insulator and metallic phases of vanadium dioxide (VO2) would open up a universe of applications in nanophotonics via modulation of the local dielectric environment of nanophotonic structures allowing them to function as active devices. Here we show dynamic reversible control of VO2 insulator-to-metal transition (IMT) locally on the scale of 15 nm or less and control of nanoantennas, observed in the near-field for the first time. Using polarization-selective near-field imaging techniques, we monitor simultaneously the IMT in VO2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metallic VO2 locally and reversibly transform infrared plasmonic dipolar antennas to monopole antennas. Fundamentally, the IMT in VO2 can be triggered on femtosecond timescale to allow ultrafast nanoscale control of optical phenomena. These unique capabilities open up exciting novel applications in active nanophotonics.
We explore the outcomes of detailed microscopic models by calculating second- and third-harmonic generation from thin film surfaces with discontinuous free-electron densities. These circumstances can occur in structures consisting of a simple metal m irror, or arrangements composed of either different metals or a metal and a free electron system like a conducting oxide. Using a hydrodynamic approach we highlight the case of a gold mirror, and that of a two-layer system containing indium tin oxide (ITO) and gold. We assume the gold mirror surface is characterized by a free-electron cloud of varying density that spills into the vacuum, which as a result of material dispersion exhibits epsilon-near-zero conditions and local field enhancement at the surface. For a bylayer consisting of a thin ITO and gold films, if the wave is incident from the ITO side the electromagnetic field is presented with a free-electron discontinuity at the ITO/gold interface, and wavelength-dependent, epsilon-near-zero conditions that enhance local fields and conversion efficiencies, and determine the surfaces emission properties. We evaluate the relative significance of additional nonlinear sources that arise when a free-electron discontinuity is present, and show that harmonic generation can be sensitive to the density of the screening free-electron cloud, and not its thickness. Our findings also suggest the possibility to control surface harmonic generation through surface charge engineering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا