ﻻ يوجد ملخص باللغة العربية
Quantization is studied from a viewpoint of field extension. If the dynamical fields and their action have a periodicity, the space of wave functions should be algebraically extended `a la Galois, so that it may be consistent with the periodicity. This was pointed out by Y. Nambu three decades ago. Having chosen quantum mechanics (one dimensional field theory), this paper shows that a different Galois extension gives a different quantization scheme. A new scheme of quantization appears when the invariance under Galois group is imposed as a physical state condition. Then, the normalization condition appears as a sum over the product of more than three wave functions, each of which is given for a different root adjoined by the field extension.
Let $ksubseteq K$ be a finite Galois extension of fields with Galois group $G$. Let $mathscr{G}$ be the automorphism $k$-group scheme of $K$. We construct a canonical $k$-subgroup scheme $underline{G}subsetmathscr{G}$ with the property that $Spec_k(K
Fedosovs simple geometrical construction for deformation quantization of symplectic manifolds is generalized in three ways without introducing new variables: (1) The base manifold is allowed to be a supermanifold. (2) The star product does not have t
We show that the associative algebra structure can be incorporated in the BRST quantization formalism for gauge theories such that extension from the corresponding Lie algebra to the associative algebra is achieved using operator quantization of redu
In this work various symbol spaces with values in a sequentially complete locally convex vector space are introduced and discussed. They are used to define vector-valued oscillatory integrals which allow to extend Rieffels strict deformation quantiza
It is shown that the heat operator in the Hall coherent state transform for a compact Lie group $K$ is related with a Hermitian connection associated to a natural one-parameter family of complex structures on $T^*K$. The unitary parallel transport of