ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological charge pumping in the interacting bosonic Rice-Mele model

283   0   0.0 ( 0 )
 نشر من قبل Andrew Hayward
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate topological charge pumping in a system of interacting bosons in the tight-binding limit, described by the Rice-Mele model. An appropriate topological invariant for the many-body case is the change of polarization per pump cycle, which we compute for various interaction strengths from infinite-size matrix-product-state simulations. We verify that the charge pumping remains quantized as long as the pump cycle avoids the superfluid phase. In the limit of hardcore bosons, the quantized pumped charge can be understood from single-particle properties such as the integrated Berry curvature constructed from Bloch states, while this picture breaks down at finite interaction strengths. These two properties -- robust quantized charge transport in an interacting system of bosons and the breakdown of a single-particle invariant -- could both be measured with ultracold quantum gases extending a previous experiment [Lohse et al., Nature Phys. 12, 350 (2016)]. Furthermore, we investigate the entanglement spectrum of the Rice-Mele model and argue that the quantized charge pumping is encoded in a winding of the spectral flow in the entanglement spectrum over a pump cycle.



قيم البحث

اقرأ أيضاً

Recent experiments with ultracold quantum gases have successfully realized integer-quantized topological charge pumping in optical lattices. Motivated by this progress, we study the effects of static disorder on topological Thouless charge pumping. W e focus on the half-filled Rice-Mele model of free spinless fermions and consider random diagonal disorder. In the instantaneous basis, we compute the polarization, the entanglement spectrum, and the local Chern marker. As a first main result, we conclude that the space-integrated local Chern marker is best suited for a quantitative determination of topological transitions in a disordered system. In the time-dependent simulations, we use the time-integrated current to obtain the pumped charge in slowly periodically driven systems. As a second main result, we observe and characterize a disorder-driven breakdown of the quantized charge pump. There is an excellent agreement between the static and the time-dependent ways of computing the pumped charge. The topological transition occurs well in the regime where all states are localized on the given system sizes and is therefore not tied to a delocalization-localization transition of Hamiltonian eigenstates. For individual disorder realizations, the breakdown of the quantized pumping occurs for parameters where the spectral bulk gap inherited from the band gap of the clean system closes, leading to a globally gapless spectrum. As a third main result and with respect to the analysis of finite-size systems, we show that the disorder average of the bulk gap severely overestimates the stability of quantized pumping. A much better estimate is the typical value of the distribution of energy gaps, also called mode of the distribution.
We investigate the interacting, one-dimensional Rice-Mele model, a prototypical fermionic model of topological properties. To set the stage, we firstly compute the single-particle spectral function, the local density, and the boundary charge in the a bsence of interactions. The boundary charge is fully determined by bulk properties indicating a bulk-boundary correspondence. In a large parameter regime it agrees with the one obtained from an effective low-energy theory (arXiv:2004.00463). Secondly, we investigate the robustness of our results towards two-particle interactions. To resum the series of leading logarithms for small gaps, which dismantle plain perturbation theory in the interaction, we use an essentially analytical renormalization group approach. It is controlled for small interactions and can directly be applied to the microscopic lattice model. We benchmark the results against numerical density matrix renormalization group data. The main interaction effect in the bulk is a power-law renormalization of the gap with an interaction dependent exponent. The important characteristics of the boundary charge are unaltered and can be understood from the renormalized bulk properties, elevating the bulk-boundary correspondence to the interacting regime. This requires a consistent treatment not only of the low-energy gap renormalization but also of the high-energy band width one. In contrast to low-energy field theories our renormalization group approach also provides the latter. We show that the interaction spoils the relation between the bulk properties and the number of edge states, consistent with the observation that the Rice-Mele model with finite potential modulation does not reveal any zero-energy edge states.
79 - C. Li , Z. Song 2020
We study coupled non-Hermitian Rice-Mele chains, which consist of Su-Schrieffer-Heeger (SSH) chain system with staggered on-site imaginary potentials. In two dimensional (2D) thermodynamic limit, the exceptional points (EPs) are shown to exhibit topo logical feature: EPs correspond to topological defects of a real auxiliary 2D vector field in k space, which is obtained from the Bloch states of the non-Hermitian Hamiltonian. As a topological invariant, the topological charges of EPs can be $pm$1/2, obtained by the winding number calculation. Remarkably, we find that such a topological characterization remains for a finite number of coupled chains, even a single chain, in which the momentum in one direction is discrete. It shows that the EPs in the quasi-1D system still exhibit topological characteristics and can be an abridged version for a 2D system with symmetry protected EPs that are robust in perturbations, which proves that topological invariants for a quasi-1D system can be extracted from the projection of the corresponding 2D limit system on it.
Recently it has been proposed and experimentally demonstrated that a spin-orbit coupled multi-component gas in 1d lattice can be viewed as spinless gas in a synthetic 2d lattice with a magnetic flux. In this letter we consider interaction effect of s uch a Fermi gas, and propose signatures in charge pumping experiment, which can be easily realized in this setting. Using 1/3 filling of the lowest 2d band as an example, in strongly interacting regime, we show that the charge pumping value gradually approaches a universal fractional value for large spin component and low filling of 1d lattice, indicating a fractional quantum Hall type behavior; while the charge pumping value is zero if the 1d lattice filling is commensurate, indicating a Mott insulator behavior. The charge-density-wave order is also discussed.
163 - K. Asaga , T. Fukui 2021
We introduce a long-period generic spatial modulation into a typical model of the Thouless pump, namely, the Rice--Mele (RM) model, to examine the lattice analog of the fermion charge in quantum field theory. We derive a Diophantine equation relating the fermion charge and the pumped charge, which leads to the one-dimensional (1D) analog of the Streda formula in the quantum Hall effect (QHE). This formula implies that an adiabatic change of the periodicity of the spatial modulation yields a spatial charge pump such that the rightmost charge is pumped to the right by the Chern number compared with the leftmost charge. This causes a change in the length of the fermion chain by an integer, thus providing the opportunity for direct measurement of the Streda formula in 1D systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا