ﻻ يوجد ملخص باللغة العربية
Surface superconductivity has recently been observed on the (001) surface of the topological crystalline insulator Pb$_{1-x}$Sn$_{x}$Te using point-contact spectroscopy, and theoretically proposed to be of the chiral $p-$wave type. In this paper, we closely examine the conditions for realizing a robust chiral $p-$wave order in this system, rather than conventional $s$-wave superconductivity. Further, within the $p$-wave superconducting phase, we identify parameter regimes where impurity bound (Shiba) states depend crucially on the existence of the chiral $p-$wave order, and distinguish them from other regimes where the chiral $p-$wave order does exist but the impurity-induced subgap bound states cannot be used as evidence for it. Such a distinction can provide an easily realizable experimental test for chiral $p-$wave order in this system. Notably, we have obtained exact analytical expressions for the bound state wavefunctions in point defects, in the chiral $p-$wave superconducting state, and find that instead of the usual $exponential$ decay profile that characterizes bound states, these states decay as a $power-law$ at large distances from the defect. As a possible application of our findings, we also show that the zero-energy Shiba states in point defects possess an internal SU(2) rotational symmetry which enables them to be useful as quantum qubits.
We present a neutron scattering study of phonons in single crystals of (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te with $x=0$ (metallic, but nonsuperconducting) and $x=0.2$ (nonmetallic normal state, but superconducting). We map the phonon dispersions (mo
We study the effect of Hunds splitting of repulsive interactions on electronic phase transitions in the multiorbital topological crystalline insulator Pb$_{1-x}$Sn$_{x}$Te, when the chemical potential is tuned to the vicinity of low-lying Type-II Van
The temperature dependence of the London penetration depth $Deltalambda(T)$ in the superconducting doped topological crystalline insulator Sn$_{1-x}$In$_x$Te was measured down to 450 mK for two different doping levels, x $approx$ 0.45 (optimally dope
Neutron scattering has played a significant role in characterizing magnetic and structural correlations in Fe$_{1+y}$Te$_{1-x}$Se$_x$ and their connections with superconductivity. Here we review several key aspects of the physics of iron chalcogenide
Superconductivity and ferromagnetism are two antagonistic cooperative phenomena, which makes it difficult for them to coexist. Here we demonstrate experimentally that they do coexist in EuFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ with $0.2leq xleq0.4$, in wh