ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Neural Machine Translation with Joint Textual and Phonetic Embedding

98   0   0.0 ( 0 )
 نشر من قبل Mingbo Ma
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural machine translation (NMT) is notoriously sensitive to noises, but noises are almost inevitable in practice. One special kind of noise is the homophone noise, where words are replaced by other words with similar pronunciations. We propose to improve the robustness of NMT to homophone noises by 1) jointly embedding both textual and phonetic information of source sentences, and 2) augmenting the training dataset with homophone noises. Interestingly, to achieve better translation quality and more robustness, we found that most (though not all) weights should be put on the phonetic rather than textual information. Experiments show that our method not only significantly improves the robustness of NMT to homophone noises, but also surprisingly improves the translation quality on some clean test sets.



قيم البحث

اقرأ أيضاً

Neural machine translation has achieved remarkable empirical performance over standard benchmark datasets, yet recent evidence suggests that the models can still fail easily dealing with substandard inputs such as misspelled words, To overcome this i ssue, we introduce a new encoding heuristic of the input symbols for character-level NLP models: it encodes the shape of each character through the images depicting the letters when printed. We name this new strategy visual embedding and it is expected to improve the robustness of NLP models because humans also process the corpus visually through printed letters, instead of machinery one-hot vectors. Empirically, our method improves models robustness against substandard inputs, even in the test scenario where the models are tested with the noises that are beyond what is available during the training phase.
Small perturbations in the input can severely distort intermediate representations and thus impact translation quality of neural machine translation (NMT) models. In this paper, we propose to improve the robustness of NMT models with adversarial stab ility training. The basic idea is to make both the encoder and decoder in NMT models robust against input perturbations by enabling them to behave similarly for the original input and its perturbed counterpart. Experimental results on Chinese-English, English-German and English-French translation tasks show that our approaches can not only achieve significant improvements over strong NMT systems but also improve the robustness of NMT models.
88 - Yong Cheng , Lu Jiang , 2019
Neural machine translation (NMT) often suffers from the vulnerability to noisy perturbations in the input. We propose an approach to improving the robustness of NMT models, which consists of two parts: (1) attack the translation model with adversaria l source examples; (2) defend the translation model with adversarial target inputs to improve its robustness against the adversarial source inputs.For the generation of adversarial inputs, we propose a gradient-based method to craft adversarial examples informed by the translation loss over the clean inputs.Experimental results on Chinese-English and English-German translation tasks demonstrate that our approach achieves significant improvements ($2.8$ and $1.6$ BLEU points) over Transformer on standard clean benchmarks as well as exhibiting higher robustness on noisy data.
Unsupervised neural machine translation (UNMT) has recently attracted great interest in the machine translation community. The main advantage of the UNMT lies in its easy collection of required large training text sentences while with only a slightly worse performance than supervised neural machine translation which requires expensive annotated translation pairs on some translation tasks. In most studies, the UMNT is trained with clean data without considering its robustness to the noisy data. However, in real-world scenarios, there usually exists noise in the collected input sentences which degrades the performance of the translation system since the UNMT is sensitive to the small perturbations of the input sentences. In this paper, we first time explicitly take the noisy data into consideration to improve the robustness of the UNMT based systems. First of all, we clearly defined two types of noises in training sentences, i.e., word noise and word order noise, and empirically investigate its effect in the UNMT, then we propose adversarial training methods with denoising process in the UNMT. Experimental results on several language pairs show that our proposed methods substantially improved the robustness of the conventional UNMT systems in noisy scenarios.
Exposing diverse subword segmentations to neural machine translation (NMT) models often improves the robustness of machine translation as NMT models can experience various subword candidates. However, the diversification of subword segmentations most ly relies on the pre-trained subword language models from which erroneous segmentations of unseen words are less likely to be sampled. In this paper, we present adversarial subword regularization (ADVSR) to study whether gradient signals during training can be a substitute criterion for exposing diverse subword segmentations. We experimentally show that our model-based adversarial samples effectively encourage NMT models to be less sensitive to segmentation errors and improve the performance of NMT models in low-resource and out-domain datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا