ترغب بنشر مسار تعليمي؟ اضغط هنا

Galactic Center Pulsars with the ngVLA

48   0   0.0 ( 0 )
 نشر من قبل Geoffrey C. Bower
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pulsars in the Galactic Center (GC) are important probes of General Relativity, star formation, stellar dynamics, stellar evolution, and the interstellar medium. Despite years of searching, only a handful of pulsars in the central 0.5 deg are known. The high-frequency sensitivity of ngVLA will open a new window for discovery and characterization of pulsars in the GC. A pulsar in orbit around the GC black hole, Sgr A*, will provide an unprecedented probe of black hole physics and General Relativity.



قيم البحث

اقرأ أيضاً

Studies of Fermi data indicate an excess of GeV gamma rays around the Galactic center (GC), possibly due to dark matter. We show that young gamma-ray pulsars can yield a similar signal. First, a high concentration of GC supernovae naturally leads to a population of kicked pulsars symmetric about the GC. Second, while very-young pulsars with soft spectra reside near the Galactic plane, pulsars with spectra that have hardened with age accumulate at larger angles. This combination, including unresolved foreground pulsars, traces the morphology and spectrum of the Excess.
We report on the first pulsar and transient survey of the Galactic Center (GC) with the Atacama Large Millimeter/submillimeter Array (ALMA). The observations were conducted during the Global Millimeter VLBI Array campaign in 2017 and 2018. We carry o ut searches using timeseries of both total intensity and other polarization components in the form of Stokes parameters. We incorporate acceleration and its derivative in the pulsar search, and also search in segments of the entire observation to compensate for potential orbital motion of the pulsar. While no new pulsar is found, our observations yield the polarization profile of the GC magnetar PSR J1745-2900 at mm-wavelength for the first time, which turns out to be nearly 100 % linearly polarized. Additionally, we estimate the survey sensitivity placed by both system and red noise, and evaluate its capability of finding pulsars in orbital motion with either Sgr A* or a binary companion. We show that the survey is sensitive to only the most luminous pulsars in the known population, and future observations with ALMA in Band-1 will deliver significantly deeper survey sensitivity on the GC pulsar population.
Stars within the innermost part of the Nuclear Star Cluster can reach orbital velocities up to a few percent of the light speed. As analyzed by Rafikov (2020), Doppler boosting of stellar light may be of relevance at the pericenter of stellar orbits, especially with the upcoming high-precision photometry in the near- and mid-infrared bands. Here we analyze the previously neglected effect of infrared spectral index of monitored objects on the Doppler-boosted continuum emission in a narrow band. In contrast to main-sequences stars, the detected compact infrared-excess dust-enshrouded objects have an enhanced Doppler-boosting effect by as much as an order of magnitude, with the variability amplitude of the order of ten percent for the most eccentric orbits. In a similar way, pulsars dominated by non-thermal synchrotron emission are also expected to exhibit a stronger Doppler-boosted signal by a factor of at least four in comparison with canonical S stars. In case the stellar orbit is robustly determined, the relative flux variation can thus provide hints about the nature of the objects. For extended dust-enshrouded objects, such as G1, that are variable due to tidal, ellipsoidal, bow-shock, and irradiation effects, the subtraction of the expected Doppler-boosting variations will help to better comprehend their internal physics. In addition, the relative flux variability due to higher-order relativistic effects is also modified for different negative spectral indices in a way that it can obtain both positive and negative values with the relative variability of the order of one percent.
Gamma-ray data from the Fermi-Large Area Telescope reveal an unexplained, apparently diffuse, signal from the Galactic bulge. The origin of this Galactic Center Excess (GCE) has been debated with proposed sources prominently including self-annihilati ng dark matter and a hitherto undetected population of millisecond pulsars (MSPs). We use a binary population synthesis forward model to demonstrate that an MSP population arising from the accretion induced collapse of O-Ne white dwarfs in Galactic bulge binaries can naturally explain the GCE. Synchrotron emission from MSP-launched cosmic ray electrons and positrons seems also to explain the mysterious haze of hard-spectrum, non-thermal microwave emission from the inner Galaxy detected in WMAP and Planck data.
The Galactic Center (GC) has been long known to host gamma-ray emission detected to >10 TeV. HESS data now points to two plausible origins: the supermassive black hole (perhaps with >PeV cosmic rays and neutrinos) or high-energy electrons from the pu tative X-ray pulsar wind nebula G359.95-0.04 observed by Chandra and NuSTAR. We show that if the magnetic field experienced by PWN electrons is near the several mG ambient field strength suggested by radio observations of the nearby GC magnetar SGR J1745-29, synchrotron losses constrain the TeV gamma-ray output to be far below the data. Accounting for the peculiar geometry of GC infrared emission, we also find that the requisite TeV flux could be reached if the PWN is ~1 pc from Sgr A* and the magnetic field is two orders of magnitude weaker, a scenario that we discuss in relation to recent data and theoretical developments. Otherwise, Sgr A* is left, which would then be a PeV link to other AGN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا