ﻻ يوجد ملخص باللغة العربية
Episodic accretion may be a common occurrence in the evolution of young pre-main sequence stars and has important implications for our understanding of star and planet formation. Many fundamental aspects of what drives the accretion physics, however, are still unknown. The ngVLA will be a key tool in understanding the nature of these events. The high spatial resolution, broad spectral coverage, and unprecedented sensitivity will allow for the detailed analysis of outburst systems. The proposed frequency range of the ngVLA allows for observations of the gas, dust, and non-thermal emission from the star and disk.
Most massive galaxies are now thought to go through an Active Galactic Nucleus (AGN) phase one or more times. Yet, the cause of triggering and the variations in the intrinsic and observed properties of AGN population are still poorly understood. Youn
The next-generation Very Large Array (ngVLA) is an astronomical observatory planned to operate at centimeter wavelengths (25 to 0.26 centimeters, corresponding to a frequency range extending from 1.2 to 116 GHz). The observatory will be a synthesis r
The science case and associated science requirements for a next-generation Very Large Array (ngVLA) are described, highlighting the five key science goals developed out of a community-driven vision of the highest scientific priorities in the next dec
Planets assemble in the midplanes of protoplanetary disks. The compositions of dust and gas in the disk midplane region determine the compositions of nascent planets, including their chemical hospitality to life. In this context, the distributions of
Observations with modern radio telescopes have revealed that classical novae are far from the simple, spherically symmetric events they were once assumed to be. It is now understood that novae provide excellent laboratories to study several astrophys