ترغب بنشر مسار تعليمي؟ اضغط هنا

Demonstration of MeV-Scale Physics in Liquid Argon Time Projection Chambers Using ArgoNeuT

302   0   0.0 ( 0 )
 نشر من قبل Ivan Lepetic
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MeV-scale energy depositions by low-energy photons produced in neutrino-argon interactions have been identified and reconstructed in ArgoNeuT liquid argon time projection chamber (LArTPC) data. ArgoNeuT data collected on the NuMI beam at Fermilab were analyzed to select isolated low-energy depositions in the TPC volume. The total number, reconstructed energies and positions of these depositions have been compared to those from simulations of neutrino-argon interactions using the FLUKA Monte Carlo generator. Measured features are consistent with energy depositions from photons produced by de-excitation of the neutrinos target nucleus and by inelastic scattering of primary neutrons produced by neutrino-argon interactions. This study represents a successful reconstruction of physics at the MeV-scale in a LArTPC, a capability of crucial importance for detection and reconstruction of supernova and solar neutrino interactions in future large LArTPCs.



قيم البحث

اقرأ أيضاً

Using truth-level Monte Carlo simulations of particle interactions in a large volume of liquid argon, we demonstrate physics capabilities enabled by reconstruction of topologically compact and isolated low-energy features, or `blips, in large liquid argon time projection chamber (LArTPC) events. These features are mostly produced by electron products of photon interactions depositing ionization energy. The blip identification capability of the LArTPC is enabled by its unique combination of size, position resolution precision, and low energy thresholds. We show that consideration of reconstructed blips in LArTPC physics analyses can result in substantial improvements in calorimetry for neutrino and new physics interactions and for final-state particles ranging in energy from the MeV to the GeV scale. Blip activity analysis is also shown to enable discrimination between interaction channels and final-state particle types. In addition to demonstrating these gains in calorimetry and discrimination, some limitations of blip reconstruction capabilities and physics outcomes are also discussed.
188 - R. Acciarri , C. Adams , J. Asaadi 2016
The capabilities of liquid argon time projection chambers (LArTPCs) to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe el ectron neutrino ($ u_e$) appearance. The LArTPC promises excellent background rejection capabilities, especially in this golden channel for both short and long baseline neutrino oscillation experiments. We present the first experimental observation of electron neutrinos and anti-neutrinos in the ArgoNeut LArTPC, in the energy range relevant to DUNE and the Fermilab Short Baseline Neutrino Program. We have selected 37 electron candidate events and 274 gamma candidate events, and measured an 80% purity of electrons based on a topological selection. Additionally, we present a of separation of electrons from gammas using calorimetric energy deposition, demonstrating further separation of electrons from background gammas.
This paper presents a graph neural network (GNN) technique for low-level reconstruction of neutrino interactions in a Liquid Argon Time Projection Chamber (LArTPC). GNNs are still a relatively novel technique, and have shown great promise for similar reconstruction tasks in the LHC. In this paper, a multihead attention message passing network is used to classify the relationship between detector hits by labelling graph edges, determining whether hits were produced by the same underlying particle, and if so, the particle type. The trained model is 84% accurate overall, and performs best on the EM shower and muon track classes. The models strengths and weaknesses are discussed, and plans for developing this technique further are summarised.
99 - M. Auger , R. Berner , Y. Chen 2019
We develop a novel approach for a Time Projection Chamber (TPC) concept suitable for deployment in kilotonne scale detectors, with a charge-readout system free from reconstruction ambiguities, and a robust TPC design that reduces high-voltage risks w hile increasing the coverage of the light collection system. This novel concept could be deployed as a Far Detector module in the Deep Underground Neutrino Experiment (DUNE) neutrino-oscillation experiment. For the charge-readout system, we use the charge-collection pixels and associated application-specific integrated circuits currently being developed for the liquid argon (LAr) component of the DUNE Near Detector design, ArgonCube. In addition, we divide the TPC into a number or shorter drift volumes, reducing the total voltage used to drift the ionisation electrons, and minimising the stored energy per TPC. Segmenting the TPC also contains scintillation light, allowing for precise trigger localisation and a more expansive light-readout system. Furthermore, the design opens the possibility of replacing or upgrading components. These augmentations could substantially improve reliability and sensitivity, particularly for low energy signals, in comparison to a traditional monolithic LArTPCs with projective charge-readout.
We report the demonstration of a low-power pixelated readout system designed for three-dimensional ionization charge detection and digital readout of liquid argon time projection chambers (LArTPCs). Unambiguous 3D charge readout was achieved using a custom-designed system-on-a-chip ASIC (LArPix) to uniquely instrument each pad in a pixelated array of charge-collection pads. The LArPix ASIC, manufactured in 180 nm bulk CMOS, provides 32 channels of charge-sensitive amplification with self-triggered digitization and multiplexed readout at temperatures from 80 K to 300 K. Using an 832-channel LArPix-based readout system with 3 mm spacing between pads, we demonstrated low-noise ($<$500 e$^-$ RMS equivalent noise charge) and very low-power ($<$100 $mu$W/channel) ionization signal detection and readout. The readout was used to successfully measure the three-dimensional ionization distributions of cosmic rays passing through a LArTPC, free from the ambiguities of existing projective techniques. The system design relies on standard printed circuit board manufacturing techniques, enabling scalable and low-cost production of large-area readout systems using common commercial facilities. This demonstration overcomes a critical technical obstacle for operation of LArTPCs in high-occupancy environments, such as the near detector site of the Deep Underground Neutrino Experiment (DUNE).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا