ﻻ يوجد ملخص باللغة العربية
We report an advanced organic spin-interface architecture with magnetic remanence at room temperature, constituted by metal phthalocyanine molecules magnetically coupled with Co layer(s), mediated by graphene. Fe- and Cu-phthalocyanines assembled on graphene/Co have identical structural configurations, but FePc couples antiferromagnetically with Co up to room temperature, while CuPc couples ferromagnetically with weaker coupling and thermal stability, as deduced by element-selective X-ray magnetic circular dichroic signals. The robust antiferromagnetic coupling is stabilized by a superexchange interaction, driven by the out-of-plane molecular orbitals responsible of the magnetic ground state and electronically decoupled from the underlying metal via the graphene layer, as confirmed by ab initio theoretical predictions. These archetypal spin interfaces can be prototypes to demonstrate how antiferromagnetic and/or ferromagnetic coupling can be optimized by selecting the molecular orbital symmetry.
The structural and magnetic properties of a series of superlattices consisting of two ferromagnetic metals La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO) and SrRuO$_3$ (SRO) grown on (001) oriented SrTiO$_3$ are studied. Superlattices with a fixed LSMO layer thi
Transparent conducting oxides (TCOs) and transparent oxide semiconductors (TOSs) have become necessary materials for a variety of applications in the information and energy technologies, ranging from transparent electrodes to active electronics compo
To develop silicon-based spintronic devices, we have explored high-quality ferromagnetic Fe$_{3}$Si/silicon (Si) structures. Using low-temperature molecular beam epitaxy at 130 $^circ$C, we realize epitaxial growth of ferromagnetic Fe$_{3}$Si layers
We use textit{ab-initio} calculations to investigate spin-orbit torques (SOTs) in FeRh(001) deposited on W(100). Since FeRh undergoes a ferromagnetic-antiferromagnetic phase transition close to room temperature, we consider both phases of FeRh. In th
The understanding of orbital hybridization and spin-polarization at the organic-ferromagnetic interface is essential in the search for efficient hybrid spintronic devices. Here, using first-principles calculations, we report a systematic study of spi