ﻻ يوجد ملخص باللغة العربية
Learning to estimate 3D geometry in a single frame and optical flow from consecutive frames by watching unlabeled videos via deep convolutional network has made significant progress recently. Current state-of-the-art (SoTA) methods treat the two tasks independently. One typical assumption of the existing depth estimation methods is that the scenes contain no independent moving objects. while object moving could be easily modeled using optical flow. In this paper, we propose to address the two tasks as a whole, i.e. to jointly understand per-pixel 3D geometry and motion. This eliminates the need of static scene assumption and enforces the inherent geometrical consistency during the learning process, yielding significantly improved results for both tasks. We call our method as Every Pixel Counts++ or EPC++. Specifically, during training, given two consecutive frames from a video, we adopt three parallel networks to predict the camera motion (MotionNet), dense depth map (DepthNet), and per-pixel optical flow between two frames (OptFlowNet) respectively. The three types of information are fed into a holistic 3D motion parser (HMP), and per-pixel 3D motion of both rigid background and moving objects are disentangled and recovered. Comprehensive experiments were conducted on datasets with different scenes, including driving scenario (KITTI 2012 and KITTI 2015 datasets), mixed outdoor/indoor scenes (Make3D) and synthetic animation (MPI Sintel dataset). Performance on the five tasks of depth estimation, optical flow estimation, odometry, moving object segmentation and scene flow estimation shows that our approach outperforms other SoTA methods. Code will be available at: https://github.com/chenxuluo/EPC.
We present a new pipeline for holistic 3D scene understanding from a single image, which could predict object shapes, object poses, and scene layout. As it is a highly ill-posed problem, existing methods usually suffer from inaccurate estimation of b
We propose a new 3D holistic++ scene understanding problem, which jointly tackles two tasks from a single-view image: (i) holistic scene parsing and reconstruction---3D estimations of object bounding boxes, camera pose, and room layout, and (ii) 3D h
Panorama images have a much larger field-of-view thus naturally encode enriched scene context information compared to standard perspective images, which however is not well exploited in the previous scene understanding methods. In this paper, we prop
In this paper, we tackle video panoptic segmentation, a task that requires assigning semantic classes and track identities to all pixels in a video. To study this important problem in a setting that requires a continuous interpretation of sensory dat
In 2D image processing, some attempts decompose images into high and low frequency components for describing edge and smooth parts respectively. Similarly, the contour and flat area of 3D objects, such as the boundary and seat area of a chair, descri