ﻻ يوجد ملخص باللغة العربية
Active galactic nuclei (AGN) accreting at rates close to the Eddington limit can host radiatively driven mildly relativistic outflows. Some of these X-ray absorbing but powerful outflows may produce strong shocks resulting in a significant non-thermal emission. This outflow-driven radio emission may be detectable in the radio-quiet quasar PDS 456 since it has a bolometric luminosity reaching the Eddington limit and a relativistic wide-aperture X-ray outflow with a kinetic power high enough to quench the star formation in its host galaxy. To investigate this possibility, we performed very-long-baseline interferometric (VLBI) observations of the quasar with the European VLBI Network (EVN) at 5 GHz. The EVN image with the full resolution reveals two faint and diffuse radio components with a projected separation of about 20 pc and an average brightness temperature of around two million Kelvin. In relation to the optical sub-mas-accuracy position measured by the Gaia mission, the two components are very likely on opposite sides of an undetected radio core. The VLBI structure at the deca-pc scale can thus be either a young jet or a bidirectional radio-emitting outflow, launched in the vicinity of a strongly accreting central engine. Two diffuse components at the hecto-pc scale, likely the relic radio emission from the past AGN activity, are tentatively detected on each side in the low-resolution EVN image.
The quasar PDS 456 (at redshift ~0.184) has a prototype ultra-fast outflow (UFO) measured in X-rays. This outflow is highly ionized with relativistic speeds, large total column densities log N_H(cm^-2) > 23, and large kinetic energies that could be i
New Swift monitoring observations of the variable, radio-quiet quasar, PDS 456, are presented. A bright X-ray flare was captured in September 2018, the flux increasing by a factor of 4 and with a doubling time-scale of 2 days. From the light crossing
Past X-ray observations of the nearby luminous quasar PDS 456 (at $z=0.184$) have revealed a wide angle accretion disk wind (Nardini et al. 2015), with an outflow velocity of $sim-0.25c$, as observed through observations of its blue-shifted iron K-sh
Simultaneous XMM-Newton, NuSTAR and HST observations, performed in March 2017, of the nearby ($z=0.184$) luminous quasar PDS 456 are presented. PDS 456 had a low X-ray flux compared to past observations, where the first of the two new XMM-Newton obse
We present an improved model for excess variance spectra describing ultra-fast outflows and successfully apply it to the luminous (L ~ 10^47 erg/s) low-redshift (z = 0.184) quasar PDS 456. The model is able to account well for the broadening of the s