ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical-Experimental failure analysis of the c-Al0.66Ti0.33N-M2 steel system using nanoindentation instrumented and finite element analysis

102   0   0.0 ( 0 )
 نشر من قبل Alvaro Enrique Gomez Ovalle Sr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A theoretical-experimental methodology for failure analysis of the c-Al0.66Ti0.33N / Interface / M2 steel coating system is proposed here. This c-Al0.66Ti0.33N coating was deposited by the arc-PVD technique. For coating modeling the traction-separation law and the extended finite element method-XFEM were applied, the cohesive zones model was used for interface modeling and the Ramberg-Osgood law for substrate modeling. Experimental values using the instrumented nanoindentation technique, the scratch test and tensile stress test were obtained and introduced into the model. By means of nanoindentation the elastic modulus of coating, the fracture energy release rate and the nano-hardness. Normal and shear stress values of the interface were obtained with the scratch test, at the adhesive and cohesive critical loads. Vickers indentation was used to generate cracking patterns in the c-Al0.66Ti0.33N / Interface / M2 steel coating system. Radial and lateral cracks were generated and analyzed after transversal FIB cuts of the fracture zones. A finite element analysis was carried out to understand the relationship between the load-displacement curve and mechanical failure of in the system, associating the pop-in with nucleation, crack growth and cracking pattern. This works present a theoretical-experimental methodology for failure analysis of hard coatings (monolithic body) allowing to calculate fracture toughness of the coating material and model cracking patterns caused by contact mechanics.



قيم البحث

اقرأ أيضاً

236 - F. Bosia , P. Olivero , E. Vittone 2016
We present experimental results and numerical Finite Element analysis to describe surface swelling due to the creation of buried graphite-like inclusions in diamond substrates subjected to MeV ion implantation. Numerical predictions are compared to e xperimental data for MeV proton and helium implantations, performed with scanning ion microbeams. Swelling values are measured with white light interferometric profilometry in both cases. Simulations are based on a model which accounts for the through-the-thickness variation of mechanical parameters in the material, as a function of ion type, fluence and energy. Surface deformation profiles and internal stress distributions are analyzed and numerical results are seen to adequately fit experimental data. Results allow us to draw conclusions on structural damage mechanisms in diamond for different MeV ion implantations.
The effect of substrate was studied using nanoindentation on thin films. Soft films on hard substrate showed more pile up than usual which was attributed to the dislocation pile up at the film substrate interface. The effect of tip blunting on the lo ad depth and hardness plots of nanoindentation was shown. The experimental date of variation of Vickers hardness with film thickness and loads were fitted and new parameters were analyzed. The delaminated area was analyzed using geometrical shapes using optical view of the failure region along with the load displacement Indentation fracture using Nanoindentation using Berkovich indenter has been studied. Indentation fracture toughness (KR) was analyzed based on computational programs. The contact mechanics during nanoindentation was studied with parameters related to indenter shape and tip sharpness. Elastic, plastic and total energies were computationally determined. The energy difference was related to shear stress being generated with elastic to plastic transition. Change in the nature of residual stress was related to film thickness.
Hydrogen adsorption by the metal organic framework (MOF) structure Zn2(BDC)2(TED) is investigated using a combination of experimental and theoretical methods. By use of the nonempirical van der Waals density-functional (vdW-DF) approach, it is found that the locus of deepest H2 binding positions lies within two types of narrow channel. The energies of the most stable binding sites, as well as the number of such binding sites, are consistent with the values obtained from experimental adsorption isotherms and heat of adsorption data. Calculations of the shift of the H-H stretch frequency when adsorbed in the MOF give a value of approximately -30 cm-1 at the strongest binding point in each of the two channels. Ambient temperature infrared absorption spectroscopy measurements give a hydrogen peak centered at 4120 cm-1, implying a shift consistent with the theoretical calculations.
Photoacoustic imaging is an emerging technology based on the photoacoustic effect that has developed rapidly in recent years. It combines the high contrast of optical imaging and the high penetration and high resolution of acoustic imaging. As a non- destructive biological tissue imaging technology, photoacoustic imaging has important application value in the field of biomedicine. With its high efficiency bi-oimaging capabilities and excellent biosafety performance, it has been favored by researchers. The visualization of photoacoustic imaging has great research signifi-cance in the early diagnosis of some diseases, especially tumors. In photoacoustic imaging, light transmission and thermal effects are important processes. This article is based on COMSOL software and uses finite element analysis to construct a physi-cal model for simulation. Through laser pulses into the stomach tissue containing tumor, the physical process of light transmission and biological heat transfer was studied, and a photothermal model composed of two physical fields was built, and finally a series of visualization graphics were obtained. This work has certain theo-retical guiding significance for further promoting the application of photoacoustic imaging in the field of biomedicine.
X-ray diffraction (XRD) and Mossbauer spectroscopy techniques combined with theoretical calculations based on the Korringa-Kohn-Rostoker (KKR) electronic structure calculation method were used to investigate sigma-phase Fe_{100-x}Re_{x} alloys (x = 4 3, 45, 47, 49 and 53). Structural data such as site occupancies and lattice constants were derived from the XRD patters, while the average isomer shift and distribution curves of the quadrupole splitting were obtained from the Mossbauer spectra. Fe-site charge-densities and the quadrupole splittings were computed with the KKR method for each lattice site. The calculated quantities combined with the experimentally determined site occupancies were successfully used to decompose the measured Mossbauer spectra into five components corresponding to the five sublattices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا