For a model nonlinear dynamical system, we show how one may obtain its bifurcation behavior by introducing noise into the dynamics and then studying the resulting Langevin dynamics in the weak-noise limit. A suitable quantity to capture the bifurcation behavior in the noisy dynamics is the conditional probability to observe a microscopic configuration at one time, conditioned on the observation of a given configuration at an earlier time. For our model system, this conditional probability is studied by using two complementary approaches, the Fokker-Planck and the path-integral approach. The latter has the advantage of yielding exact closed-form expressions for the conditional probability. All our predictions are in excellent agreement with direct numerical integration of the dynamical equations of motion.