ترغب بنشر مسار تعليمي؟ اضغط هنا

A Gentle Introduction to Deep Learning in Medical Image Processing

145   0   0.0 ( 0 )
 نشر من قبل Andreas Maier
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper tries to give a gentle introduction to deep learning in medical image processing, proceeding from theoretical foundations to applications. We first discuss general reasons for the popularity of deep learning, including several major breakthroughs in computer science. Next, we start reviewing the fundamental basics of the perceptron and neural networks, along with some fundamental theory that is often omitted. Doing so allows us to understand the reasons for the rise of deep learning in many application domains. Obviously medical image processing is one of these areas which has been largely affected by this rapid progress, in particular in image detection and recognition, image segmentation, image registration, and computer-aided diagnosis. There are also recent trends in physical simulation, modelling, and reconstruction that have led to astonishing results. Yet, some of these approaches neglect prior knowledge and hence bear the risk of producing implausible results. These apparent weaknesses highlight current limitations of deep learning. However, we also briefly discuss promising approaches that might be able to resolve these problems in the future.



قيم البحث

اقرأ أيضاً

Healthcare sector is totally different from other industry. It is on high priority sector and people expect highest level of care and services regardless of cost. It did not achieve social expectation even though it consume huge percentage of budget. Mostly the interpretations of medical data is being done by medical expert. In terms of image interpretation by human expert, it is quite limited due to its subjectivity, the complexity of the image, extensive variations exist across different interpreters, and fatigue. After the success of deep learning in other real world application, it is also providing exciting solutions with good accuracy for medical imaging and is seen as a key method for future applications in health secotr. In this chapter, we discussed state of the art deep learning architecture and its optimization used for medical image segmentation and classification. In the last section, we have discussed the challenges deep learning based methods for medical imaging and open research issue.
This paper investigates the role of size in biological organisms. More specifically, how the energy demand, expressed by the metabolic rate, changes according to the mass of an organism. Empirical evidence suggests a power-law relation between mass a nd metabolic rate, namely allometric law. For vascular organisms, the exponent $beta$ of this power-law is smaller than one, which implies scaling economy; that is, the greater the organism is, the lesser energy per cell it demands. However, the numerical value of this exponent is a theme of an extensive debate and a central issue in comparative physiology. It is presented in this work some empirical data and a detailed discussion about the most successful theories to explain these issues. A historical perspective is also shown, beginning with the first empirical insights in the sec. 19 about scaling properties in biology, passing through the two more important theories that explain the scaling properties quantitatively. Firstly, the Rubner model, that consider organism surface area and heat dissipation to derive $beta = 2/3$. Secondly, the West-Brown-Enquist theory, that explains such scaling properties as a consequence of the hierarchical and fractal nutrient distribution network, deriving $beta = 3/4$.
The accuracy and robustness of image classification with supervised deep learning are dependent on the availability of large-scale, annotated training data. However, there is a paucity of annotated data available due to the complexity of manual annot ation. To overcome this problem, a popular approach is to use transferable knowledge across different domains by: 1) using a generic feature extractor that has been pre-trained on large-scale general images (i.e., transfer-learned) but which not suited to capture characteristics from medical images; or 2) fine-tuning generic knowledge with a relatively smaller number of annotated images. Our aim is to reduce the reliance on annotated training data by using a new hierarchical unsupervised feature extractor with a convolutional auto-encoder placed atop of a pre-trained convolutional neural network. Our approach constrains the rich and generic image features from the pre-trained domain to a sophisticated representation of the local image characteristics from the unannotated medical image domain. Our approach has a higher classification accuracy than transfer-learned approaches and is competitive with state-of-the-art supervised fine-tuned methods.
Deep learning models have been successfully used in medical image analysis problems but they require a large amount of labeled images to obtain good performance.Deep learning models have been successfully used in medical image analysis problems but t hey require a large amount of labeled images to obtain good performance. However, such large labeled datasets are costly to acquire. Active learning techniques can be used to minimize the number of required training labels while maximizing the models performance.In this work, we propose a novel sampling method that queries the unlabeled examples that maximize the average distance to all training set examples in a learned feature space. We then extend our sampling method to define a better initial training set, without the need for a trained model, by using ORB feature descriptors. We validate MedAL on 3 medical image datasets and show that our method is robust to different dataset properties. MedAL is also efficient, achieving 80% accuracy on the task of Diabetic Retinopathy detection using only 425 labeled images, corresponding to a 32% reduction in the number of required labeled examples compared to the standard uncertainty sampling technique, and a 40% reduction compared to random sampling.
Deep learning has shown great promise for CT image reconstruction, in particular to enable low dose imaging and integrated diagnostics. These merits, however, stand at great odds with the low availability of diverse image data which are needed to tra in these neural networks. We propose to overcome this bottleneck via a deep reinforcement learning (DRL) approach that is integrated with a style-transfer (ST) methodology, where the DRL generates the anatomical shapes and the ST synthesizes the texture detail. We show that our method bears high promise for generating novel and anatomically accurate high resolution CT images at large and diverse quantities. Our approach is specifically designed to work with even small image datasets which is desirable given the often low amount of image data many researchers have available to them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا