ﻻ يوجد ملخص باللغة العربية
Simulation of fermionic many-body systems on a quantum computer requires a suitable encoding of fermionic degrees of freedom into qubits. Here we revisit the Superfast Encoding introduced by Kitaev and one of the authors. This encoding maps a target fermionic Hamiltonian with two-body interactions on a graph of degree $d$ to a qubit simulator Hamiltonian composed of Pauli operators of weight $O(d)$. A system of $m$ fermi modes gets mapped to $n=O(md)$ qubits. We propose Generalized Superfast Encodings (GSE) which require the same number of qubits as the original one but have more favorable properties. First, we describe a GSE such that the corresponding quantum code corrects any single-qubit error provided that the interaction graph has degree $dge 6$. In contrast, we prove that the original Superfast Encoding lacks the error correction property for $dle 6$. Secondly, we describe a GSE that reduces the Pauli weight of the simulator Hamiltonian from $O(d)$ to $O(log{d})$. The robustness against errors and a simplified structure of the simulator Hamiltonian offered by GSEs can make simulation of fermionic systems within the reach of near-term quantum devices. As an example, we apply the new encoding to the fermionic Hubbard model on a 2D lattice.
Simulating a fermionic system on a quantum computer requires encoding the anti-commuting fermionic variables into the operators acting on the qubit Hilbert space. The most familiar of which, the Jordan-Wigner transformation, encodes fermionic operato
A classical local cellular automaton can describe an interacting quantum field theory for fermions. We construct a simple classical automaton for a particular version of the Thirring model with imaginary coupling. This interacting fermionic quantum f
We present a quantum-classical hybrid algorithm that simulates electronic structures of periodic systems such as ground states and quasiparticle band structures. By extending the unitary coupled cluster (UCC) theory to describe crystals in arbitrary
We consider the realization of universal quantum computation through braiding of Majorana fermions supplemented by unprotected preparation of noisy ancillae. It has been shown by Bravyi [Phys. Rev. A 73, 042313 (2006)] that under the assumption of pe
Coupling a quantum many-body system to an external environment dramatically changes its dynamics and offers novel possibilities not found in closed systems. Of special interest are the properties of the steady state of such open quantum many-body sys