ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced star formation in both disks and ram pressure stripped tails of GASP jellyfish galaxies

170   0   0.0 ( 0 )
 نشر من قبل Benedetta Vulcani
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exploiting the data from the GAs Stripping Phenomena in galaxies with MUSE (GASP) program, we compare the integrated Star Formation Rate- Mass relation (SFR-M_ast) relation of 42 cluster galaxies undergoing ram pressure stripping (stripping galaxies) to that of 32 field and cluster undisturbed galaxies. Theoretical predictions have so far led to contradictory conclusions about whether ram pressure can enhance the star formation in the gas disks and tails or not and until now a statistically significant observed sample of stripping galaxies was lacking. We find that stripping galaxies occupy the upper envelope of the control sample SFR-M_ast relation, showing a systematic enhancement of the SFR at any given mass. The star formation enhancement occurs in the disk (0.2 dex), and additional star formation takes place in the tails. Our results suggest that strong ram pressure stripping events can moderately enhance the star formation also in the disk prior to gas removal.



قيم البحث

اقرأ أيضاً

Jellyfish galaxies in clusters are key tools to understand environmental processes at work in dense environments. The advent of Integral Field Spectroscopy has recently allowed to study a significant sample of stripped galaxies in the cluster environ ment at z$sim 0.05$, through the GAs Stripping Phenomena in galaxies with MUSE (GASP) survey. However, optical spectroscopy can only trace the ionized gas component through the H$_{alpha}$ emission that can be spatially resolved on kpc scale at this redshift. The complex interplay between the various gas phases (ionized, neutral, molecular) is however yet to be understood. We report here the detection of large amounts of molecular gas both in the tails and in the disks of 4 jellyfish galaxies from the GASP sample with stellar masses $sim 3.5times 10^{10}-3times 10^{11} M_{odot}$, showing strong stripping. The mass of molecular gas that we measure in the tails amounts to several $10^9 M_{odot}$ and the total mass of molecular gas ranges between 15 and 100 % of the galaxy stellar mass. The molecular gas content within the galaxies is compatible with the one of normal spiral galaxies, suggesting that the molecular gas in the tails has been formed in-situ. We find a clear correlation between the ionized gas emission $rm Halpha$ and the amount of molecular gas. The CO velocities measured from APEX data are not always coincident with the underlying $rm Halpha$ emitting knots, and the derived Star Formation Efficiencies appear to be very low.
Previous studies have revealed a population of galaxies in galaxy clusters with ram pressure stripped (RPS) tails of gas and embedded young stars. We observed 1.4 GHz continuum and HI emission with the Very Large Array in its B-configuration in two f ields of the Coma cluster to study the radio properties of RPS galaxies. The best continuum sensitivities in the two fields are 6 and 8 $mu$Jy per 4 beam respectively, which are 4 and 3 times deeper than those previously published. Radio continuum tails are found in 10 (8 are new) out of 20 RPS galaxies, unambiguously revealing the presence of relativistic electrons and magnetic fields in the stripped tails. Our results also hint that the tail has a steeper spectrum than the galaxy. The 1.4 GHz continuum in the tails is enhanced relative to their H$alpha$ emission by a factor of $sim$7 compared to the main bodies of the RPS galaxies. The 1.4 GHz continuum of the RPS galaxies is also enhanced relative to their IR emission by a factor of $sim$2 compared to star-forming galaxies. The enhancement is likely related to ram pressure and turbulence in the tail. We furthermore present HI detections in three RPS galaxies and upper limits for the other RPS galaxies. The cold gas in D100s stripped tail is dominated by molecular gas, which is likely a consequence of the high ambient pressure. No evidence of radio emission associated with ultra-diffuse galaxies is found in our data.
Jellyfish are cluster galaxies that experience strong ram-pressure effects that strip their gas. Their H$alpha$ images reveal ionized gas tails up to 100 kpc, which could be hosting ongoing star formation. Here we report the ultraviolet (UV) imaging observation of the jellyfish galaxy JO201 obtained at a spatial resolution $sim$ 1.3 kpc. The intense burst of star formation happening in the tentacles is the focus of the present study. JO201 is the UV-brightest cluster galaxy in Abell 85 ($z sim$ 0.056) with knots and streams of star formation in the ultraviolet. We identify star forming knots both in the stripped gas and in the galaxy disk and compare the UV features with the ones traced by H$alpha$ emission. Overall, the two emissions remarkably correlate, both in the main body and along the tentacles. Similarly, also the star formation rates of individual knots derived from the extinction-corrected FUV emission agree with those derived from the H$alpha$ emission and range from $sim$ 0.01 -to- 2.07 $M_{odot} , yr^{-1}$. The integrated star formation rate from FUV flux is $sim$ 15 $M_{odot} , yr^{-1}$. The unprecedented deep UV imaging study of the jellyfish galaxy JO201 shows clear signs of extraplanar star-formation activity due to a recent/ongoing gas stripping event.
The diffuse ionized gas (DIG) is an important component of the interstellar medium and it can be affected by many physical processes in galaxies. Measuring its distribution and contribution in emission allows us to properly study both its ionization and star formation in galaxies. Here, we measure for the first time the DIG emission in 38 gas-stripped galaxies in local clusters drawn from the GAs Stripping Phenomena in galaxies with MUSE survey (GASP). These galaxies are at different stages of stripping. We also compare the DIG properties to those of 33 normal galaxies from the same survey. To estimate the DIG fraction (C$_{DIG}$) and derive its maps, we combine attenuation corrected H$alpha$ surface brightness with $rm [SII]/Halpha$ line ratio. Our results indicate that we cannot use neither a single H$alpha$ or $rm [SII]/Halpha$ value, nor a threshold in equivalent width of H$alpha$ emission line to separate spaxels dominated by DIG and non-DIG emission. Assuming a constant surface brightness of the DIG across galaxies underestimates C$_{DIG}$. Contrasting stripped and non-stripped galaxies, we find no clear differences in C$_{DIG}$. The DIG emission contributes between 20% and 90% of the total integrated flux, and does not correlate with the galactic stellar mass and star-formation rate (SFR). The C$_{DIG}$ anti-correlates with the specific SFR, which may indicate an older ($>10^8$ yr) stellar population as ionizing source of the DIG. The DIG fraction shows anti-correlations with the SFR surface density, which could be used for a robust estimation of integrated C$_{DIG}$ in galaxies.
It is well known that galaxies falling into clusters can experience gas stripping due to ram-pressure by the intra-cluster medium (ICM). The most spectacular examples are galaxies with extended tails of optically-bright stripped material known as jel lyfish. We use the first large homogeneous compilation of jellyfish galaxies in clusters from the WINGS and OmegaWINGS surveys, and follow-up MUSE observations from the GASP MUSE programme to investigate the orbital histories of jellyfish galaxies in clusters and reconstruct their stripping history through position vs. velocity phase- space diagrams. We construct analytic models to define the regions in phase-space where ram-pressure stripping is at play. We then study the distribution of cluster galaxies in phase-space and find that jellyfish galaxies have on average higher peculiar velocities (and higher cluster velocity dispersion) than the overall population of cluster galaxies at all clustercentric radii, which is indicative of recent infall into the cluster and radial orbits. In particular, the jellyfish galaxies with the longest gas tails reside very near the cluster cores (in projection) and are moving at very high speeds, which coincides with the conditions of the most intense ram-pressure. We conclude that many of the jellyfish galaxies seen in clusters likely formed via fast (~1- 2 Gyr), incremental, outside-in ram-pressure stripping during first infall into the cluster in highly radial orbits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا