ﻻ يوجد ملخص باللغة العربية
In this paper, a linear $ell$-intersection pair of codes is introduced as a generalization of linear complementary pairs of codes. Two linear codes are said to be a linear $ell$-intersection pair if their intersection has dimension $ell$. Characterizations and constructions of such pairs of codes are given in terms of the corresponding generator and parity-check matrices. Linear $ell$-intersection pairs of MDS codes over $mathbb{F}_q$ of length up to $q+1$ are given for all possible parameters. As an application, linear $ell$-intersection pairs of codes are used to construct entanglement-assisted quantum error correcting codes. This provides a large number of new MDS entanglement-assisted quantum error correcting codes.
We obtain a characterization on self-orthogonality for a given binary linear code in terms of the number of column vectors in its generator matrix, which extends the result of Bouyukliev et al. (2006). As an application, we give an algorithmic method
In this paper, we construct several classes of maximum distance separable (MDS) codes via generalized Reed-Solomon (GRS) codes and extended GRS codes, where we can determine the dimensions of their Euclidean hulls or Hermitian hulls. It turns out tha
In this paper we will estimate the main parameters of some evaluation codes which are known as projective parameterized codes. We will find the length of these codes and we will give a formula for the dimension in terms of the Hilbert function associ
We describe and explore so-called linear hash functions and show how they can be used to build error detection and correction codes. The method can be applied for different types of errors (for example, burst errors). When the method is applied to a
A framework for linear-programming (LP) decoding of nonbinary linear codes over rings is developed. This framework facilitates linear-programming based reception for coded modulation systems which use direct modulation mapping of coded symbols. It is