ﻻ يوجد ملخص باللغة العربية
The dipole anisotropy seen in the {cosmic microwave background radiation} is interpreted as due to our peculiar motion. The Cosmological Principle implies that this cosmic dipole signal should also be present, with the same direction, in the large-scale distribution of matter. Measurement of the cosmic matter dipole constitutes a key test of the standard cosmological model. Current measurements of this dipole are barely above the expected noise and unable to provide a robust test. Upcoming radio continuum surveys with the SKA should be able to detect the dipole at high signal to noise. We simulate number count maps for SKA survey specifications in Phases 1 and 2, including all relevant effects. Nonlinear effects from local large-scale structure contaminate the {cosmic (kinematic)} dipole signal, and we find that removal of radio sources at low redshift ($zlesssim 0.5$) leads to significantly improved constraints. We forecast that the SKA could determine the kinematic dipole direction in Galactic coordinates with an error of $(Delta l,Delta b)sim(9^circ,5^circ)$ to $(8^circ, 4^circ)$, depending on the sensitivity. The predicted errors on the relative speed are $sim 10%$. These measurements would significantly reduce the present uncertainty on the direction of the radio dipole, and thus enable the first critical test of consistency between the matter and CMB dipoles.
We study the prospects to measure the cosmic radio dipole by means of continuum surveys with the Square Kilometre Array. Such a measurement will allow a critical test of the cosmological principle. It will test whether the cosmic rest frame defined b
The intra-cluster and inter-galactic media (ICM, IGM) that pervade the large scale structure of the Universe are known to be magnetised at sub-micro Gauss to micro Gauss levels and to contain cosmic rays (CRs). The acceleration of CRs and their evolu
Radio continuum surveys have, in the past, been of restricted use in cosmology. Most studies have concentrated on cross-correlations with the cosmic microwave background to detect the integrated Sachs-Wolfe effect, due to the large sky areas that can
Future Square Kilometre Array (SKA) surveys are expected to generate huge datasets of 21cm maps on cosmological scales from the Epoch of Reionization (EoR). We assess the viability of exploiting machine learning techniques, namely, convolutional neur
We study cosmological consequences of the noncommutative approach to the standard model. Neglecting the nonminimal coupling of the Higgs field to the curvature, noncommutative corrections to Einsteins equations are present only for inhomogeneous and