ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-class Classification Model Inspired by Quantum Detection Theory

146   0   0.0 ( 0 )
 نشر من قبل Prayag Tiwari Mr.
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine Learning has become very famous currently which assist in identifying the patterns from the raw data. Technological advancement has led to substantial improvement in Machine Learning which, thus helping to improve prediction. Current Machine Learning models are based on Classical Theory, which can be replaced by Quantum Theory to improve the effectiveness of the model. In the previous work, we developed binary classifier inspired by Quantum Detection Theory. In this extended abstract, our main goal is to develop multi-class classifier. We generally use the terminology multinomial classification or multi-class classification when we have a classification problem for classifying observations or instances into one of three or more classes.



قيم البحث

اقرأ أيضاً

Machine Learning (ML) helps us to recognize patterns from raw data. ML is used in numerous domains i.e. biomedical, agricultural, food technology, etc. Despite recent technological advancements, there is still room for substantial improvement in pred iction. Current ML models are based on classical theories of probability and statistics, which can now be replaced by Quantum Theory (QT) with the aim of improving the effectiveness of ML. In this paper, we propose the Binary Classifier Inspired by Quantum Theory (BCIQT) model, which outperforms the state of the art classification in terms of recall for every category.
170 - Yuzhou Cao , Lei Feng , Senlin Shu 2021
Can we learn a multi-class classifier from only data of a single class? We show that without any assumptions on the loss functions, models, and optimizers, we can successfully learn a multi-class classifier from only data of a single class with a rig orous consistency guarantee when confidences (i.e., the class-posterior probabilities for all the classes) are available. Specifically, we propose an empirical risk minimization framework that is loss-/model-/optimizer-independent. Instead of constructing a boundary between the given class and other classes, our method can conduct discriminative classification between all the classes even if no data from the other classes are provided. We further theoretically and experimentally show that our method can be Bayes-consistent with a simple modification even if the provided confidences are highly noisy. Then, we provide an extension of our method for the case where data from a subset of all the classes are available. Experimental results demonstrate the effectiveness of our methods.
Crowdsourcing has become widely used in supervised scenarios where training sets are scarce and difficult to obtain. Most crowdsourcing models in the literature assume labelers can provide answers to full questions. In classification contexts, full q uestions require a labeler to discern among all possible classes. Unfortunately, discernment is not always easy in realistic scenarios. Labelers may not be experts in differentiating all classes. In this work, we provide a full probabilistic model for a shorter type of queries. Our shorter queries only require yes or no responses. Our model estimates a joint posterior distribution of matrices related to labelers confusions and the posterior probability of the class of every object. We developed an approximate inference approach, using Monte Carlo Sampling and Black Box Variational Inference, which provides the derivation of the necessary gradients. We built two realistic crowdsourcing scenarios to test our model. The first scenario queries for irregular astronomical time-series. The second scenario relies on the image classification of animals. We achieved results that are comparable with those of full query crowdsourcing. Furthermore, we show that modeling labelers failures plays an important role in estimating true classes. Finally, we provide the community with two real datasets obtained from our crowdsourcing experiments. All our code is publicly available.
Classification with a large number of classes is a key problem in machine learning and corresponds to many real-world applications like tagging of images or textual documents in social networks. If one-vs-all methods usually reach top performance in this context, these approaches suffer from a high inference complexity, linear w.r.t the number of categories. Different models based on the notion of binary codes have been proposed to overcome this limitation, achieving in a sublinear inference complexity. But they a priori need to decide which binary code to associate to which category before learning using more or less complex heuristics. We propose a new end-to-end model which aims at simultaneously learning to associate binary codes with categories, but also learning to map inputs to binary codes. This approach called Deep Stochastic Neural Codes (DSNC) keeps the sublinear inference complexity but do not need any a priori tuning. Experimental results on different datasets show the effectiveness of the approach w.r.t baseline methods.
A similarity label indicates whether two instances belong to the same class while a class label shows the class of the instance. Without class labels, a multi-class classifier could be learned from similarity-labeled pairwise data by meta classificat ion learning. However, since the similarity label is less informative than the class label, it is more likely to be noisy. Deep neural networks can easily remember noisy data, leading to overfitting in classification. In this paper, we propose a method for learning from only noisy-similarity-labeled data. Specifically, to model the noise, we employ a noise transition matrix to bridge the class-posterior probability between clean and noisy data. We further estimate the transition matrix from only noisy data and build a novel learning system to learn a classifier which can assign noise-free class labels for instances. Moreover, we theoretically justify how our proposed method generalizes for learning classifiers. Experimental results demonstrate the superiority of the proposed method over the state-of-the-art method on benchmark-simulated and real-world noisy-label datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا