ترغب بنشر مسار تعليمي؟ اضغط هنا

Dimensional crossover of acoustic phonon lifetime in $2H$-MoSe$_2$

63   0   0.0 ( 0 )
 نشر من قبل Axel Bruchhausen Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A time-resolved observation of coherent interlayer longitudinal acoustic phonons in 2$H$-MoSe$_2$ is reported. A femtosecond pump-probe technique is used to investigate the evolution of the energy loss of these vibrational modes in a wide selection of MoSe$_2$ flakes with different thicknesses ranging from bilayer up to the bulk limit. By directly analysing the temporal decay of the modes, we can clearly distinguish an abrupt crossover related to the acoustic mean free path of the phonons in a layered system, and the constraints imposed to the acoustic decay channels when reducing the dimensionality. Loses intrinsic to the low dimensionality of single or few layer materials impose critical limitations for their use in optomechanical and optoelectronic devices.



قيم البحث

اقرأ أيضاً

In bilayer CrI3, experimental and theoretical studies suggest that the magnetic order is closely related to the layer staking configuration. In this work, we study the effect of dynamical lattice distortions, induced by non-linear phonon coupling, in the magnetic order of the bilayer system. We use density functional theory to determine the phonon properties and group theory to obtain the allowed phonon-phonon interactions. We find that the bilayer structure possesses low-frequency Raman modes that can be non-linearly activated upon the coherent photo-excitation of a suitable infrared phonon mode. This transient lattice modification, in turn, inverts the sign of the interlayer spin interaction for parameters accessible in experiments, indicating a low-frequency light-induced antiferromagnet-to-ferromagnet transition.
We present measurements at millikelvin temperatures of the microwave-frequency acoustic properties of a crystalline silicon nanobeam cavity incorporating a phononic bandgap clamping structure for acoustic confinement. Utilizing pulsed laser light to excite a co-localized optical mode of the nanobeam cavity, we measure the dynamics of cavity acoustic modes with single-phonon sensitivity. Energy ringdown measurements for the fundamental $5$~GHz acoustic mode of the cavity shows an exponential increase in phonon lifetime versus number of periods in the phononic bandgap shield, increasing up to $tau approx 1.5$~seconds. This ultralong lifetime, corresponding to an effective phonon propagation length of several kilometers, is found to be consistent with damping from non-resonant two-level system defects on the surface of the silicon device. Potential applications of these ultra-coherent nanoscale mechanical resonators range from tests of various collapse models of quantum mechanics to miniature quantum memory elements in hybrid superconducting quantum circuits.
We present a high-resolution resonance Raman study of hBN encapsulated MoSe$_2$ and WSe$_2$ monolayers at 4 K using excitation energies from 1.6 eV to 2.25 eV. We report resonances with the WSe$_2$ A2s and MoSe$_2$ A2s and B2s excited Rydberg states despite their low oscillator strength. When resonant with the 2s states we identify new Raman peaks which are associated with intravalley scattering between different Rydberg states via optical phonons. By calibrating the Raman scattering efficiency and separately constraining the electric dipole matrix elements, we reveal that the scattering rates for k=0 optical phonons are comparable for both 1s and 2s states despite differences in the envelope functions. We also observe multiple new dispersive Raman peaks including a peak at the WSe$_2$ A2s resonance that demonstrates non-linear dispersion and peak-splitting behavior that suggests that the dispersion relations for dark excitonic states at energies near the 2s state are extremely complex.
We report on the exciton and trion density dynamics in a single layer of MoSe$_2$, resonantly excited and probed using three-pulse four-wave mixing (FWM), at temperatures from 300K to 77K . A multi-exponential third-order response function for amplit ude and phase of the heterodyne-detected FWM signal including four decay processes is used to model the data. We provide a consistent interpretation within the intrinsic band structure, not requiring the inclusion of extrinsic effects. We find an exciton radiative lifetime in the sub-picosecond range consistent to what has been recently reported. After the dominating radiative decay, the remaining exciton density, which has been scattered from the initially excited bright radiative state into dark states of different nature by exciton-phonon scattering or disorder scattering, shows a slower dynamics, covering 10ps to 10ns timescales. This includes direct bright transitions with larger in-plane momentum, as well as indirect dark transitions to indirect dark states. We find that exciton-exciton annihilation is not relevant in the observed dynamics, in variance from previous finding under non-resonant excitation. The trion density at 77K reveals a decay of the order of 1ps, similar to what is observed for the exciton. After few tens of picoseconds, the trion dynamics resembles the one of the exciton, indicating that trion ionization occurs on this timescale.
Neutral and charged excitons (trions) in atomically-thin materials offer important capabilities for photonics, from ultrafast photodetectors to highly-efficient light-emitting diodes and lasers. Recent studies of van der Waals (vdW) heterostructures comprised of dissimilar monolayer materials have uncovered a wealth of optical phenomena that are predominantly governed by interlayer interactions. Here, we examine the optical properties in NbSe$_2$ - MoSe$_2$ vdW heterostructures, which provide an important model system to study metal-semiconductor interfaces, a common element in optoelectronics. Through low-temperature photoluminescence (PL) microscopy we discover a sharp emission feature, L1, that is localized at the NbSe$_2$-capped regions of MoSe$_2$. L1 is observed at energies below the commonly-studied MoSe$_2$ excitons and trions, and exhibits temperature- and power-dependent PL consistent with exciton localization in a confining potential. Remarkably, L1 is very robust not just in different samples, but also under a variety of fabrication processes. Using first-principles calculations we reveal that the confinement potential required for exciton localization naturally arises from the in-plane band bending due to the changes in the electron affinity between pristine MoSe$_2$ and NbSe$_2$ - MoSe$_2$ heterostructure. We discuss the implications of our studies for atomically-thin optoelectronics devices with atomically-sharp interfaces and tunable electronic structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا