ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable amplification and cooling of a diamond resonator with a microscope

67   0   0.0 ( 0 )
 نشر من قبل Paul Barclay
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Controlling the dynamics of mechanical resonators is central to many quantum science and metrology applications. Optomechanical control of diamond resonators is attractive owing to diamonds excellent physical properties and its ability to host electronic spins that can be coherently coupled to mechanical motion. Using a confocal microscope, we demonstrate tunable amplification and damping of a diamond nanomechanical resonators motion. Observation of both normal mode cooling from room temperature to 80K, and amplification into self--oscillations with $60,mutext{W}$ of optical power is observed via waveguide optomechanical readout. This system is promising for quantum spin-optomechanics, as it is predicted to enable optical control of stress-spin coupling with rates of $sim$ 1 MHz (100 THz) to ground (excited) states of diamond nitrogen vacancy centers.



قيم البحث

اقرأ أيضاً

We theoretically analyse the cooling dynamics of a high-Q mode of a mechanical resonator, when the structure is also an optical cavity and is coupled with a NV center. The NV center is driven by a laser and interacts with the cavity photon field and with the strain field of the mechanical oscillator, while radiation pressure couples mechanical resonator and cavity field. Starting from the full master equation we derive the rate equation for the mechanical resonators motion, whose coefficients depend on the system parameters and on the noise sources. We then determine the cooling regime, the cooling rate, the asymptotic temperatures, and the spectrum of resonance fluorescence for experimentally relevant parameter regimes. For these parameters, we consider an electronic transition, whose linewidth allows one to perform sideband cooling, and show that the addition of an optical cavity in general does not improve the cooling efficiency. We further show that pure dephasing of the NV centers electronic transitions can lead to an improvement of the cooling efficiency.
Current density distributions in active integrated circuits (ICs) result in patterns of magnetic fields that contain structural and functional information about the IC. Magnetic fields pass through standard materials used by the semiconductor industr y and provide a powerful means to fingerprint IC activity for security and failure analysis applications. Here, we demonstrate high spatial resolution, wide field-of-view, vector magnetic field imaging of static (DC) magnetic field emanations from an IC in different active states using a Quantum Diamond Microscope (QDM). The QDM employs a dense layer of fluorescent nitrogen-vacancy (NV) quantum defects near the surface of a transparent diamond substrate placed on the IC to image magnetic fields. We show that QDM imaging achieves simultaneous $sim10$ $mu$m resolution of all three vector magnetic field components over the 3.7 mm $times$ 3.7 mm field-of-view of the diamond. We study activity arising from spatially-dependent current flow in both intact and decapsulated field-programmable gate arrays (FPGAs); and find that QDM images can determine pre-programmed IC active states with high fidelity using machine-learning classification methods.
Devices relying on microwave circuitry form a cornerstone of many classical and emerging quantum technologies. A capability to provide in-situ, noninvasive and direct imaging of the microwave fields above such devices would be a powerful tool for the ir function and failure analysis. In this work, we build on recent achievements in magnetometry using ensembles of nitrogen vacancy centres in diamond, to present a widefield microwave microscope with few-micron resolution over a millimeter-scale field of view, 130nT/sqrt-Hz microwave amplitude sensitivity, a dynamic range of 48 dB, and sub-ms temporal resolution. We use our microscope to image the microwave field a few microns above a range of microwave circuitry components, and to characterise a novel atom chip design. Our results open the way to high-throughput characterisation and debugging of complex, multi-component microwave devices, including real-time exploration of device operation.
We propose two measurement-based schemes to cool a nonlinear mechanical resonator down to energies close to that of its ground state. The protocols rely on projective measurements of a spin degree of freedom, which interacts with the resonator throug h a Jaynes-Cummings interaction. We show the performance of these cooling schemes, that can be either concatenated -- i.e. built by repeating a sequence of dynamical evolutions followed by projective measurements -- or single-shot. We characterize the performance of both cooling schemes with numerical simulations, and pinpoint the effects of decoherence and noise mechanisms. Due to the ubiquity and experimental relevance of the Jaynes-Cummings model, we argue that our results can be applied in a variety of experimental setups.
Diamond cavity optomechanical devices hold great promise for quantum technology based on coherent coupling between photons, phonons and spins. These devices benefit from the exceptional physical properties of diamond, including its low mechanical dis sipation and optical absorption. However the nanoscale dimensions and mechanical isolation of these devices can make them susceptible to thermo-optic instability when operating at the high intracavity field strengths needed to realize coherent photon--phonon coupling. In this work, we overcome these effects through engineering of the device geometry, enabling operation with large photon numbers in a previously thermally unstable regime of red-detuning. We demonstrate optomechanically induced transparency with cooperativity > 1 and normal mode cooling from 300 K to 60 K, and predict that these device will enable coherent optomechanical manipulation of diamond spin systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا