ترغب بنشر مسار تعليمي؟ اضغط هنا

Skyrmions from calorons

145   0   0.0 ( 0 )
 نشر من قبل Josh Cork
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Josh Cork




اسأل ChatGPT حول البحث

We derive a one-parameter family of gauged Skyrme models from Yang-Mills theory on $S^1timesmathbb{R}^3$, in which skyrmions are well-approximated by calorons and monopoles. In particular we study the spherically symmetric solutions to the model with two distinct classes of boundary conditions, and compare them to calorons and monopoles. Calorons interpolate between instantons and monopoles in certain limits, and we observe similar behaviour in the constructed gauged Skyrme model in the weak and strong coupling limits. This comparison of calorons, monopoles, and skyrmions may be a way to further understand the apparent relationships between skyrmions and monopoles on $mathbb{R}^3$.



قيم البحث

اقرأ أيضاً

72 - Josh Cork 2017
We study $SU(2)$ calorons, also known as periodic instantons, and consider invariance under isometries of $S^1timesmathbb{R}^3$ coupled with a non-spatial isometry called the rotation map. In particular, we investigate the fixed points under various cyclic symmetry groups. Our approach utilises a construction akin to the ADHM construction of instantons -- what we call the monad matrix data for calorons -- derived from the work of Charbonneau and Hurtubise. To conclude, we present an example of how investigating these symmetry groups can help to construct new calorons by deriving Nahm data in the case of charge $2$.
149 - Mareike Haberichter 2014
In the Skyrme model atomic nuclei are modelled as quantized soliton solutions in a nonlinear field theory of pions. The mass number is given by the conserved topological charge $B$ of the solitons. Conventionally, Skyrmions are semiclassically quanti zed within the rigid body approach. In this approach Skyrmions are effectively treated as rigid rotors in space and isospace that is it is assumed that Skyrmions do not deform at all when they spin and isospin. This approximation resulted in qualitative and encouraging quantitative agreement with experimental nuclear physics data. In this talk, we point out that the theoretical agreement could be further improved by allowing classical Skyrmion solutions to deform as they spin and isospin. As a first step towards a better understanding of how nuclei can be approximated by classically spinning and isospinning soliton solutions, we study how classical Skyrmion solutions of topological charges $B=1-4,8$ deform when classical isospin is added.
113 - A. Halavanau , Yakov Shnir 2013
We discuss how internal rotation with fixed angular frequency can affect the solitons in the baby Skyrme model in which the global O(3) symmetry is broken to the SO(2). Two particular choices of the potential term are considered, the old potential an d the new double vacuum potential, We do not impose any assumptions about the symmetry on the fields. Our results confirm existence of two types of instabilities determined by the relation between the mass parameter of the potential and the angular frequency.
In this paper, we present a detailed study of Skyrmion-Skyrmion scattering for two $B=1$ Skyrmions in the attractive channel where we observe two different scattering regimes. For large separation, the scattering can be approximated as interacting di poles. We give a qualitative estimate when this approximation breaks down. For small separations we observe an additional short-range repulsion which is qualitatively similar to monopole scattering. We also observe the interesting effect of rotation without rotating whereby two Skyrmions, whose orientations remain constant while well-separated, change their orientation after scattering. We can explain this effect by following preimages through the scattering process, thereby measuring which part of an in-coming Skyrmion forms part of an out-going Skyrmion. This leads to a new way of visualising Skyrmions. Furthermore, we consider spinning Skyrmions and find interesting trajectories.
133 - L.A. Ferreira , Ya. Shnir 2017
We introduce a Skyrme type model with the target space being the 3-sphere S^3 and with an action possessing, as usual, quadratic and quartic terms in field derivatives. The novel character of the model is that the strength of the couplings of those t wo terms are allowed to depend upon the space-time coordinates. The model should therefore be interpreted as an effective theory, such that those couplings correspond in fact to low energy expectation values of fields belonging to a more fundamental theory at high energies. The theory possesses a self-dual sector that saturates the Bogomolny bound leading to an energy depending linearly on the topological charge. The self-duality equations are conformally invariant in three space dimensions leading to a toroidal ansatz and exact self-dual Skyrmion solutions. Those solutions are labelled by two integers and, despite their toroidal character, the energy density is spherically symmetric when those integers are equal and oblate or prolate otherwise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا