ﻻ يوجد ملخص باللغة العربية
We derive a one-parameter family of gauged Skyrme models from Yang-Mills theory on $S^1timesmathbb{R}^3$, in which skyrmions are well-approximated by calorons and monopoles. In particular we study the spherically symmetric solutions to the model with two distinct classes of boundary conditions, and compare them to calorons and monopoles. Calorons interpolate between instantons and monopoles in certain limits, and we observe similar behaviour in the constructed gauged Skyrme model in the weak and strong coupling limits. This comparison of calorons, monopoles, and skyrmions may be a way to further understand the apparent relationships between skyrmions and monopoles on $mathbb{R}^3$.
We study $SU(2)$ calorons, also known as periodic instantons, and consider invariance under isometries of $S^1timesmathbb{R}^3$ coupled with a non-spatial isometry called the rotation map. In particular, we investigate the fixed points under various
In the Skyrme model atomic nuclei are modelled as quantized soliton solutions in a nonlinear field theory of pions. The mass number is given by the conserved topological charge $B$ of the solitons. Conventionally, Skyrmions are semiclassically quanti
We discuss how internal rotation with fixed angular frequency can affect the solitons in the baby Skyrme model in which the global O(3) symmetry is broken to the SO(2). Two particular choices of the potential term are considered, the old potential an
In this paper, we present a detailed study of Skyrmion-Skyrmion scattering for two $B=1$ Skyrmions in the attractive channel where we observe two different scattering regimes. For large separation, the scattering can be approximated as interacting di
We introduce a Skyrme type model with the target space being the 3-sphere S^3 and with an action possessing, as usual, quadratic and quartic terms in field derivatives. The novel character of the model is that the strength of the couplings of those t