ترغب بنشر مسار تعليمي؟ اضغط هنا

SOFIA mid-infrared observations of Supernova 1987A in 2016 --- forward shocks and possible dust re-formation in the post-shocked region?

126   0   0.0 ( 0 )
 نشر من قبل Mikako Matsuura
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The equatorial ring of Supernova (SN) 1987A has been exposed to forward shocks from the SN blast wave, and it has been suggested that these forward shocks have been causing on-going destruction of dust in the ring. We obtained SOFIA FORCAST 11.1, 19.7 and 31.5 micron photometry of SN,1987A in 2016. Compared with Spitzer measurements 10 years earlier, the 31.5 micron flux has significantly increased. The excess at 31.5 micron appears to be related to the Herschel 70 micron excess, which was detected 5 years earlier. The dust mass needed to account for the the 31.5--70 micron excess is 3--7x10^-4 Msun, more than ten times larger than the ring dust mass (1x10^-5 Msun) estimate from the data 10-years earlier. We argue that dust grains are re-formed or grown in the post-shock regions in the ring after forward shocks have destroyed pre-existing dust grains in the ring and released refractory elements into gas. In the post-shock region, atoms can stick to surviving dust grains, and the dust mass may have increased (grain growth), or dust grains might have condensed directly from the gas. An alternative possibility is that the outer part of the expanding ejecta dust might have been heated by X-ray emission from the circumstellar ring. The future development of this excess could reveal whether grains are reformed in the post-shocked region of the ring or eject dust is heated by X-ray.



قيم البحث

اقرأ أيضاً

We present infrared (IR) photometry and spectroscopy of the Type II-P SN 2017eaw and its progenitor in the nearby galaxy NGC 6946. Progenitor observations in the Ks band in 4 epochs from 1 year to 1 day before the explosion reveal no significant vari ability in the progenitor star greater than 6% that last longer than 200 days. SN 2017eaw is a typical SN II-P with near-IR and mid-IR photometric evolution similar to those of SNe 2002hh and 2004et, other normal SNe II-P in the same galaxy. Spectroscopic monitoring between 389 and 480 days post explosion reveals strong CO first overtone emission at 389 d, with a line profile matching that of SN 1987A from the same epoch, indicating $sim 10^{-3} , M_{odot}$ of CO at 1,800 K. From the 389 d epoch until the most recent observation at 566 d, the first overtone feature fades while the 4.5 $mu$m excess, likely from the CO fundamental band, remains. This behavior indicates that the CO has not been destroyed, but that the gas has cooled enough that the levels responsible for first overtone emissions are no longer populated. Finally, the evolution of Spitzer 3.6 $mu$m photometry shows evidence for dust formation in SN 2017eaw, with a dust mass of $10^{-6}$ or $10^{-4},M_{odot}$ assuming carbonaceous or silicate grains respectively.
Classical novae commonly show evidence of rapid dust formation within months of the outburst. However, it is unclear how molecules and grains are able to condense within the ejecta, given the potentially harsh environment created by ionizing radiatio n from the white dwarf. Motivated by the evidence for powerful radiative shocks within nova outflows, we propose that dust formation occurs within the cool, dense shell behind these shocks. We incorporate a simple molecular chemistry network and classical nucleation theory with a model for the thermodynamic evolution of the post-shock gas, in order to demonstrate the formation of both carbon and forsterite ($rm Mg_2SiO_4$) grains. The high densities due to radiative shock compression ($n sim 10^{14}$ cm$^{-3}$) result in CO saturation and rapid dust nucleation. Grains grow efficiently to large sizes $gtrsim 0.1mu$m, in agreement with IR observations of dust-producing novae, and with total dust masses sufficient to explain massive extinction events such as V705 Cas. As in dense stellar winds, dust formation is CO-regulated, with carbon-rich flows producing carbon-rich grains and oxygen-rich flows primarily forming silicates. CO is destroyed by non-thermal particles accelerated at the shock, allowing additional grain formation at late times, but the efficiency of this process appears to be low. Given observations showing that individual novae produce both carbonaceous and silicate grains, we concur with previous works attributing this bimodality to chemical heterogeneity of the ejecta. Nova outflows are diverse and inhomogeneous, and the observed variety of dust formation events can be reconciled by different abundances, the range of shock properties, and the observer viewing angle. The latter may govern the magnitude of extinction, with the deepest extinction events occurring for observers within the binary equatorial plane.
Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450um, 870um, 1.4mm, and 2.8mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2Msun). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded stars core). The dust emission is concentrated to the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.
We present multi-epoch mid-infrared (IR) photometry and the optical discovery observations of the impostor supernova (SN) 2010da in NGC 300 using new and archival Spitzer Space Telescope images and ground-based observatories. The mid-IR counterpart o f SN 2010da was detected as SPIRITS 14bme in the SPitzer InfraRed Intensive Transient Survey (SPIRITS), an ongoing systematic search for IR transients. A sharp increase in the 3.6 $mu$m flux followed by a rapid decrease measured ~150 d before and ~80 d after the initial outburst, respectively, reveal a mid-IR counterpart to the coincident optical and high luminosity X-ray outbursts. At late times after the outburst (~2000 d), the 3.6 and 4.5 $mu$m emission increased to over a factor of 2 times the progenitor flux. We attribute the re-brightening mid-IR emission to continued dust production and increasing luminosity of the surviving system associated with SN 2010da. We analyze the evolution of the dust temperature, mass, luminosity, and equilibrium temperature radius in order to resolve the nature of SN 2010da. We address the leading interpretation of SN 2010da as an eruption from a luminous blue variable (LBV) high-mass X-ray binary (HMXB) system. We propose that SN 2010da is instead a supergiant (sg)B[e]-HMXB based on similar luminosities and dust masses exhibited by two other known sgB[e]-HMXB systems. Additionally, the SN 2010da progenitor occupies a similar region on a mid-IR color-magnitude diagram (CMD) with known sgB[e] stars in the Large Magellanic Cloud. The lower limit estimated for the orbital eccentricity of the sgB[e]-HMXB (e>0.82) from X-ray luminosity measurements is high compared to known sgHMXBs and supports the claim that SN 2010da may be associated with a newly formed HMXB system.
The dust-forming nova V2676 Oph is unique in that it was the first nova to provide evidence of C_2 and CN molecules during its near-maximum phase and evidence of CO molecules during its early decline phase. Observations of this nova have revealed the slow evolution of its lightcurves and have also shown low isotopic ratios of carbon (12C/13C) and nitrogen (14N/15N) in its nova envelope. These behaviors indicate that the white dwarf (WD) star hosting V2676 Oph is a CO-rich WD rather than an ONe-rich WD (typically larger in mass than the former). We performed mid-infrared spectroscopic and photometric observations of V2676 Oph in 2013 and 2014 (respectively 452 and 782 days after its discovery). No significant [Ne II] emission at 12.8 micron was detected at either epoch. These provided evidence for a CO-rich WD star hosting V2676 Oph. Both carbon-rich and oxygen-rich grains were detected in addition to an unidentified infrared feature at 11.4 micron originating from polycyclic aromatic hydrocarbon molecules or hydrogenated amorphous carbon grains in the envelope of V2676 Oph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا