ﻻ يوجد ملخص باللغة العربية
Recent work has introduced attacks that extract the architecture information of deep neural networks (DNN), as this knowledge enhances an adversarys capability to conduct black-box attacks against the model. This paper presents the first in-depth security analysis of DNN fingerprinting attacks that exploit cache side-channels. First, we define the threat model for these attacks: our adversary does not need the ability to query the victim model; instead, she runs a co-located process on the host machine victims deep learning (DL) system is running and passively monitors the accesses of the target functions in the shared framework. Second, we introduce DeepRecon, an attack that reconstructs the architecture of the victim network by using the internal information extracted via Flush+Reload, a cache side-channel technique. Once the attacker observes function invocations that map directly to architecture attributes of the victim network, the attacker can reconstruct the victims entire network architecture. In our evaluation, we demonstrate that an attacker can accurately reconstruct two complex networks (VGG19 and ResNet50) having observed only one forward propagation. Based on the extracted architecture attributes, we also demonstrate that an attacker can build a meta-model that accurately fingerprints the architecture and family of the pre-trained model in a transfer learning setting. From this meta-model, we evaluate the importance of the observed attributes in the fingerprinting process. Third, we propose and evaluate new framework-level defense techniques that obfuscate our attackers observations. Our empirical security analysis represents a step toward understanding the DNNs vulnerability to cache side-channel attacks.
In recent years, various deep learning techniques have been exploited in side channel attacks, with the anticipation of obtaining more appreciable attack results. Most of them concentrate on improving network architectures or putting forward novel al
Numerous previous works have studied deep learning algorithms applied in the context of side-channel attacks, which demonstrated the ability to perform successful key recoveries. These studies show that modern cryptographic devices are increasingly t
In recent years, the convolutional neural networks (CNNs) have received a lot of interest in the side-channel community. The previous work has shown that CNNs have the potential of breaking the cryptographic algorithm protected with masking or desync
Recently, many profiling side-channel attacks based on Machine Learning and Deep Learning have been proposed. Most of them focus on reducing the number of traces required for successful attacks by optimizing the modeling algorithms. In previous work,
The interplay between security and reliability is poorly understood. This paper shows how triple modular redundancy affects a side-channel attack (SCA). Our counterintuitive findings show that modular redundancy can increase SCA resiliency.