ﻻ يوجد ملخص باللغة العربية
Spiral phase contrast is an important and convenient imaging processing technology in edge detection, and a broader field-of-view (FOV) of imaging is a long-pursuing aim to see more regions of the illumination objects. Compared with near-infrared (NIR) spectrum, the up-conversion imaging in visible spectrum benefits from the advantages of higher efficiency detection and lower potential speckle. FOV enhanced and spiral phase contrast up-conversion imaging processing methods by using second order nonlinear frequency up-conversion from NIR spectrum to visible spectrum in two different configurations are presented in this work. By changing the temperature of crystal, controllable spatial patterns of imaging with more than 4.5 times enhancement of FOV is realized in both configurations. Additionally, we present numerical simulations of the phenomenon, which agree well with the experimental observations. Our results provide a very promising way in imaging processing, which may be widely used in biomedicine, remote sensing and up-conversion monitoring.
Infrared imaging is a crucial technique in a multitude of applications, including night vision, autonomous vehicles navigation, optical tomography, and food quality control. Conventional infrared imaging technologies, however, require the use of mate
The ongoing effort to implement compact and cheap optical systems is the main driving force for the recent flourishing research in the field of optical metalenses. Metalenses are a type of metasurface, used for focusing and imaging applications, and
On-invasive optical imaging techniques are essential diagnostic tools in many fields. Although various recent methods have been proposed to utilize and control light in multiple scattering media, non-invasive optical imaging through and inside scatte
We propose a experimental scenario of edge enhancement ghost imaging of phase objects with nonlocal orbital angular momentum (OAM) phase filters. Spatially incoherent thermal light is separated into two daughter beams, the test and reference beams, i
We theoretically investigate the dependence of the enhancement of optical near-fields at nanometric tips on the shape, size, and material of the tip. We confirm a strong dependence of the field enhancement factor on the radius of curvature. In additi