ﻻ يوجد ملخص باللغة العربية
We address memory effects in the dynamics of a two-level open quantum system interacting with a classical fluctuating field via dipole interaction. In particular, we study the backflow of information for a field with a Lorentzian spectrum, and reveal the existence of two working regimes, where memory effects are governed either by the energy gap of the two-level system, or by the interaction energy. Our results shows that non-Markovianity increases with time, at variance with the results obtained for dephasing and despite the dissipative nature of the interaction, thus suggesting that the corresponding memory effects might be observed in practical scenarios.
A sufficient condition for non-Markovian master equation which ensures the complete positivity of the resulting time evolution is presented.
We study the non-equilibrium dynamics of a pair of qubits made of two-level atoms separated in space with distance $r$ and interacting with one common electromagnetic field but not directly with each other. Our calculation makes a weak coupling assum
We discuss Bohmian paths of the two-level atoms moving in a waveguide through an external resonance-producing field, perpendicular to the waveguide, and localized in a region of finite diameter. The time spent by a particle in a potential region is n
We derive the stochastic equations and consider the non-Markovian dynamics of a system of multiple two-level atoms in a common quantum field. We make only the dipole approximation for the atoms and assume weak atom-field interactions. From these assu
We study non-Markovian dynamics of a two level atom using pseudomode method. Because of the memory effect of non-Markovian dynamics, the atom receives back information and excited energy from the reservoir at a later time, which causes more complicat