ترغب بنشر مسار تعليمي؟ اضغط هنا

Attractor sets and Julia sets in low dimensions

78   0   0.0 ( 0 )
 نشر من قبل Alastair Fletcher
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف A. Fletcher




اسأل ChatGPT حول البحث

If $X$ is the attractor set of a conformal IFS in dimension two or three, we prove that there exists a quasiregular semigroup $G$ with Julia set equal to $X$. We also show that in dimension two, with a further assumption similar to the open set condition, the same result can be achieved with a semigroup generated by one element. Consequently, in this case the attractor set is quasiconformally equivalent to the Julia set of a rational map.



قيم البحث

اقرأ أيضاً

For any $ delta >0$ we construct an entire function $f$ with three singular values whose Julia set has Hausdorff dimension at most $1=delta$. Stallard proved that the dimension must be strictly larger than 1 whenever $f$ has a bounded singular set, b ut no examples with finite singular set and dimension strictly less than 2 were previously known.
We give an introduction to buried points in Julia sets and a list of questions about buried points, written to encourage aficionados of topology and dynamics to work on these questions.
Let $f : Xto X$ be a dominating meromorphic map on a compact Kahler manifold $X$ of dimension $k$. We extend the notion of topological entropy $h^l_{mathrm{top}}(f)$ for the action of $f$ on (local) analytic sets of dimension $0leq l leq k$. For an e rgodic probability measure $ u$, we extend similarly the notion of measure-theoretic entropy $h_{ u}^l(f)$. Under mild hypothesis, we compute $h^l_{mathrm{top}}(f)$ in term of the dynamical degrees of $f$. In the particular case of endomorphisms of $mathbb{P}^2$ of degree $d$, we show that $h^1_{mathrm{top}}(f)= log d$ for a large class of maps but we give examples where $h^1_{mathrm{top}}(f) eq log d$.
98 - Bingyang Hu , Le Hai Khoi 2019
We consider inductive limits of weighted spaces of holomorphic functions in the unit ball of $mathbb C^n$. The relationship between sets of uniqueness, weakly sufficient sets and sampling sets in these spaces is studied. In particular, the equivalenc e of these sets, under general conditions of the weights, is obtained.
166 - A. Blokh , L. Oversteegen 2008
We show that if $P$ is a quadratic polynomial with a fixed Cremer point and Julia set $J$, then for any monotone map $ph:Jto A$ from $J$ onto a locally connected continuum $A$, $A$ is a single point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا