ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting Electroweak Phase Transition with Varying Yukawa Coupling Constants

62   0   0.0 ( 0 )
 نشر من قبل Arianna Braconi
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisited the scenario of electroweak baryogenesis in the presence of large Yukawa couplings, in which it was found previously that a strongly first order electroweak phase transition can occur with the Higgs mass at its observed value of 125 GeV. Given the sensitivity of the running of the Higgs quartic coupling on the Yukawa coupling constants, we find that the addition of order one Yukawa couplings beyond the top quark drastically lowers the scale at which the Higgs potential becomes unstable. Specifically, even with only one additional order one Yukawa coupling, the scalar potential becomes unstable already at the TeV scale, assuming the Standard Model values for the Higgs sector parameters at the electroweak scale. Furthermore, by assuming the Standard Model values for the Higgs sector parameters at the TeV scale, the quartic coupling constant is driven to be larger than its Standard Model value at the electroweak scale. This in turn predicts a much lighter Higgs mass than the measured value of 125 GeV. In this scenario, the strength of the electroweak phase transition is also significantly weakened.



قيم البحث

اقرأ أيضاً

The existence of a second Higgs doublet in Nature could lead to a cosmological first order electroweak phase transition and explain the origin of the matter-antimatter asymmetry in the Universe. We explore the parameter space of such a two-Higgs-doub let-model and show that a first order electroweak phase transition strongly correlates with a significant uplifting of the Higgs vacuum w.r.t. its Standard Model value. We then obtain the spectrum and properties of the new scalars $H_0$, $A_0$ and $H^{pm}$ that signal such a phase transition, showing that the decay $A_0 rightarrow H_0 Z$ at the LHC and a sizable deviation in the Higgs self-coupling $lambda_{hhh}$ from its SM value are sensitive indicators of a strongly first order electroweak phase transition in the 2HDM.
This work investigates a simple, representative extension of the Standard Model with a real scalar singlet and spontaneous $Z_2$ breaking, which allows for a strongly first-order phase transition, as required by electroweak baryogenesis. We perform a nalytical and numerical calculations that systematically include one-loop thermal effects, Coleman-Weinberg corrections, and daisy resummation, as well as evaluation of bubble nucleation. We study the rich thermal history and identify the conditions for a strongly first-order electroweak phase transition with nearly degenerate extrema at zero temperature. This requires a light scalar with mass below 50 GeV. Exotic Higgs decays, as well as Higgs coupling precision measurements at the LHC and future collider facilities, will test this model. Additional information may be obtained from future collider constraints on the Higgs self-coupling. Gravitational-wave signals are typically too low to be probed by future gravitational wave experiments.
We consider a non-Abelian dark SU(2)$_{rm D}$ model where the dark sector couples to the Standard Model (SM) through a Higgs portal. We investigate two different scenarios of the dark sector scalars with $Z_2$ symmetry, with Higgs portal interactions that can introduce mixing between the SM Higgs boson and the SM singlet scalars in the dark sector. We utilize the existing collider results of the Higgs signal rate, direct heavy Higgs searches, and electroweak precision observables to constrain the model parameters. The $text{SU(2)}_{text{D}}$ partially breaks into $text{U(1)}_{text{D}}$ gauge group by the scalar sector. The resulting two stable massive dark gauge bosons and pseudo-Goldstone bosons can be viable cold dark matter candidates, while the massless gauge boson from the unbroken $text{U(1)}_{text{D}}$ subgroup is a dark radiation and can introduce long-range attractive dark matter (DM) self-interaction, which can alleviate the small-scale structure issues. We study in detail the pattern of strong first-order phase transition and gravitational wave (GW) production triggered by the dark sector symmetry breaking, and further evaluate the signal-to-noise ratio for several proposed space interferometer missions. We conclude that the rich physics in the dark sector may be observable with the current and future measurements at colliders, DM experiments, and GW interferometers.
68 - M. Dine , R.G. Leigh , P. Huet 1992
We report on an investigation of various problems related to the theory of the electroweak phase transition. This includes a determination of the nature of the phase transition, a discussion of the possible role of higher order radiative corrections and the theory of the formation and evolution of the bubbles of the new phase. We find in particular that no dangerous linear terms appear in the effective potential. However, the strength of the first order phase transition is 2/3 times less than what follows from the one-loop approximation. This rules out baryogenesis in the minimal version of the electroweak theory.
We analyze the quantum transport equations for supersymmetric electroweak baryogenesis including previously neglected bottom and tau Yukawa interactions and show that they imply the presence of a previously unrecognized dependence of the cosmic baryo n asymmetry on the spectrum of third generation quark and lepton superpartners. For fixed values of the CP-violating phases in the supersymmetric theory, the baryon asymmetry can vary in both magnitude and sign as a result of the squark and slepton mass dependence. For light, right-handed top and bottom quark superpartners, the baryon number creation can be driven primarily by interactions involving third generation leptons and their superpartners.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا