ﻻ يوجد ملخص باللغة العربية
The $k$-leaf power graph $G$ of a tree $T$ is a graph whose vertices are the leaves of $T$ and whose edges connect pairs of leaves at unweighted distance at most~$k$ in $T$. Recognition of the $k$-leaf power graphs for $k geq 7$ is still an open problem. In this paper, we provide two algorithms for this problem for sparse leaf power graphs. Our results shows that the problem of recognizing these graphs is fixed-parameter tractable when parameterized both by $k$ and by the degeneracy of the given graph. To prove this, we first describe how to embed the leaf root of a leaf power graph into a product of the graph with a cycle graph. We bound the treewidth of the resulting product in terms of $k$ and the degeneracy of $G$. The first presented algorithm uses methods based on monadic second-order logic (MSO$_2$) to recognize the existence of a leaf power as a subgraph of the product graph. Using the same embedding in the product graph, the second algorithm presents a dynamic programming approach to solve the problem and provide a better dependence on the parameters.
It was shown recently by Fakcharoenphol et al that arbitrary finite metrics can be embedded into distributions over tree metrics with distortion O(log n). It is also known that this bound is tight since there are expander graphs which cannot be embed
For any collection of graphs we find the minimal dimension d such that the product of these graphs is embeddable into the d-dimensional Euclidean space. In particular, we prove that the n-th powers of the Kuratowsky graphs are not embeddable into the
Graph-modification problems, where we add/delete a small number of vertices/edges to make the given graph to belong to a simpler graph class, is a well-studied optimization problem in all algorithmic paradigms including classical, approximation and p
The Graph Motif problem was introduced in 2006 in the context of biological networks. It consists of deciding whether or not a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Graph Motif has been mostly analyzed from the
A skew-symmetric graph $(D=(V,A),sigma)$ is a directed graph $D$ with an involution $sigma$ on the set of vertices and arcs. In this paper, we introduce a separation problem, $d$-Skew-Symmetric Multicut, where we are given a skew-symmetric graph $D$,