ﻻ يوجد ملخص باللغة العربية
Exchange interactions are a manifestation of the quantum mechanical nature of the electrons and play a key role in predicting the properties of materials from first principles. In density functional theory (DFT), a widely used approximation to the exchange energy combines fractions of density-based and Hartree-Fock (exact) exchange. This so-called hybrid DFT scheme is accurate in many materials, for reasons that are not fully understood. Here we show that a 1/4 fraction of exact exchange plus a 3/4 fraction of density-based exchange is compatible with a correct quantum mechanical treatment of the exchange energy of an electron pair in the unpolarized electron gas. We also show that the 1/4 exact-exchange fraction mimics a correlation interaction between doubly-excited electronic configurations. The relation between our results and trends observed in hybrid DFT calculations is discussed, along with other implications.
The magnetic properties of the intermetallic compound FeAl are investigated using exact exchange density functional theory. This is implemented within a state of the art all-electron full potential method. We find that FeAl is magnetic with a moment
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of n
A long-standing puzzle in density-functional theory is the issue of the long-range behavior of the Kohn-Sham exchange-correlation potential at metal surfaces. As an important step towards its solution, it is proved here, through a rigurouos asymptoti
A curious behavior of electron correlation energy is explored. Namely, the correlation energy is the energy that tends to drive the system toward that of the uniform electron gas. As such, the energy assumes its maximum value when a gradient of densi
In spin-density-functional theory for noncollinear magnetic materials, the Kohn-Sham system features exchange-correlation (xc) scalar potentials and magnetic fields. The significance of the xc magnetic fields is not very well explored; in particular,