ترغب بنشر مسار تعليمي؟ اضغط هنا

Transfer Learning via Unsupervised Task Discovery for Visual Question Answering

137   0   0.0 ( 0 )
 نشر من قبل Hyeonwoo Noh
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study how to leverage off-the-shelf visual and linguistic data to cope with out-of-vocabulary answers in visual question answering task. Existing large-scale visual datasets with annotations such as image class labels, bounding boxes and region descriptions are good sources for learning rich and diverse visual concepts. However, it is not straightforward how the visual concepts can be captured and transferred to visual question answering models due to missing link between question dependent answering models and visual data without question. We tackle this problem in two steps: 1) learning a task conditional visual classifier, which is capable of solving diverse question-specific visual recognition tasks, based on unsupervised task discovery and 2) transferring the task conditional visual classifier to visual question answering models. Specifically, we employ linguistic knowledge sources such as structured lexical database (e.g. WordNet) and visual descriptions for unsupervised task discovery, and transfer a learned task conditional visual classifier as an answering unit in a visual question answering model. We empirically show that the proposed algorithm generalizes to out-of-vocabulary answers successfully using the knowledge transferred from the visual dataset.



قيم البحث

اقرأ أيضاً

Questions that require counting a variety of objects in images remain a major challenge in visual question answering (VQA). The most common approaches to VQA involve either classifying answers based on fixed length representations of both the image a nd question or summing fractional counts estimated from each section of the image. In contrast, we treat counting as a sequential decision process and force our model to make discrete choices of what to count. Specifically, the model sequentially selects from detected objects and learns interactions between objects that influence subsequent selections. A distinction of our approach is its intuitive and interpretable output, as discrete counts are automatically grounded in the image. Furthermore, our method outperforms the state of the art architecture for VQA on multiple metrics that evaluate counting.
This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue that image question answering (QA) often requires multiple steps of reasoning. Thus, we develop a multiple-layer SAN in which we query an image multiple times to infer the answer progressively. Experiments conducted on four image QA data sets demonstrate that the proposed SANs significantly outperform previous state-of-the-art approaches. The visualization of the attention layers illustrates the progress that the SAN locates the relevant visual clues that lead to the answer of the question layer-by-layer.
Methodologies for training visual question answering (VQA) models assume the availability of datasets with human-annotated textit{Image-Question-Answer} (I-Q-A) triplets. This has led to heavy reliance on datasets and a lack of generalization to new types of questions and scenes. Linguistic priors along with biases and errors due to annotator subjectivity have been shown to percolate into VQA models trained on such samples. We study whether models can be trained without any human-annotated Q-A pairs, but only with images and their associated textual descriptions or captions. We present a method to train models with synthetic Q-A pairs generated procedurally from captions. Additionally, we demonstrate the efficacy of spatial-pyramid image patches as a simple but effective alternative to dense and costly object bounding box annotations used in existing VQA models. Our experiments on three VQA benchmarks demonstrate the efficacy of this weakly-supervised approach, especially on the VQA-CP challenge, which tests performance under changing linguistic priors.
We describe a very simple bag-of-words baseline for visual question answering. This baseline concatenates the word features from the question and CNN features from the image to predict the answer. When evaluated on the challenging VQA dataset [2], it shows comparable performance to many recent approaches using recurrent neural networks. To explore the strength and weakness of the trained model, we also provide an interactive web demo and open-source code. .
Performance on the most commonly used Visual Question Answering dataset (VQA v2) is starting to approach human accuracy. However, in interacting with state-of-the-art VQA models, it is clear that the problem is far from being solved. In order to stre ss test VQA models, we benchmark them against human-adversarial examples. Human subjects interact with a state-of-the-art VQA model, and for each image in the dataset, attempt to find a question where the models predicted answer is incorrect. We find that a wide range of state-of-the-art models perform poorly when evaluated on these examples. We conduct an extensive analysis of the collected adversarial examples and provide guidance on future research directions. We hope that this Adversarial VQA (AdVQA) benchmark can help drive progress in the field and advance the state of the art.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا