ﻻ يوجد ملخص باللغة العربية
Single crystalline InSb nanosheet is an emerging planar semiconductor material with potential applications in electronics, infrared optoelectronics, spintronics and topological quantum computing. Here we report on realization of a quantum dot device from a single crystalline InSb nanosheet grown by molecular-beam epitaxy. The device is fabricated from the nanosheet on a Si/SiO2 substrate and the quantum dot confinement is achieved by top gate technique. Transport measurements show a series of Coulomb diamonds, demonstrating that the quantum dot is well defined and highly tunable. Tunable, gate-defined, planar InSb quantum dots offer a renewed platform for developing semiconductor-based quantum computation technology.
We report on the transport study of a double quantum dot (DQD) device made from a freestanding, single crystalline InSb nanosheet. The freestanding nanosheet is grown by molecular beam epitaxy and the DQD is defined by top gate technique. Through the
A dual-gate InSb nanosheet field-effect device is realized and is used to investigate the physical origin and the controllability of the spin-orbit interaction in a narrow bandgap semiconductor InSb nanosheet. We demonstrate that by applying a voltag
We report electron transport measurements of a silicon double dot formed in multi-gated metal-oxide-semiconductor structures with a 15-nm-thick silicon-on-insulator layer. Tunable tunnel coupling enables us to observe an excitation spectrum in weakly
We investigate an electrostatically defined quantum point contact in a high-mobility InSb two-dimensional electron gas. Well-defined conductance plateaus are observed, and the subband structure of the quantum point contact is extracted from finite-bi
With gate-defined electrostatic traps fabricated on a double quantum well we are able to realize an optically active and voltage-tunable quantum dot confining individual, long-living, spatially indirect excitons. We study the transition from multi ex