ترغب بنشر مسار تعليمي؟ اضغط هنا

Accretion Disk MHD Winds and Blazar Classification

129   0   0.0 ( 0 )
 نشر من قبل Stella Boula
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fermi Gamma-Ray Space Telescope observations of blazars show a strong correlation between the spectral index of their gamma-ray spectra and their synchrotron peak frequency $ u_{rm{pk}}^{rm{syn}}$; additionally, the rate of Compton Dominance of these sources also seems to be a function of $ u_{rm{pk}}^{rm{syn}}$. In this work, we adopt the assumption that the nonthermal emission of blazars is primarily due to radiation by a population of Fermi-accelerated electrons in a relativistic outflow (jet) along the symmetry axis of the blazars accretion disk. Furthermore, we assume that the Compton component is related to an external photon field of photons, which are scattered from particles of the magnetohydrodynamic (MHD) wind emanating from the accretion disk. Our results reproduce well the aforementioned basic observational trends of blazar classification by varying just one parameter, namely the mass accretion rate onto the central black hole.



قيم البحث

اقرأ أيضاً

We perform GR-MHD simulations of outflow launching from thin accretion disks. As in the non-relativistic case, resistivity is essential for the mass loading of the disk wind. We implemented resistivity in the ideal GR-MHD code HARM3D, extending previ ous works (Qian et al. 2017, 2018) for larger physical grids, higher spatial resolution, and longer simulation time. We consider an initially thin, resistive disk orbiting the black hole, threaded by a large-scale magnetic flux. As the system evolves, outflows are launched from the black hole magnetosphere and the disk surface. We mainly focus on disk outflows, investigating their MHD structure and energy output in comparison with the Poynting-dominated black hole jet. The disk wind encloses two components -- a fast component dominated by the toroidal magnetic field and a slower component dominated by the poloidal field. The disk wind transitions from sub to super-Alfvenic speed, reaching velocities $simeq 0.1c$. We provide parameter studies varying spin parameter and resistivity level, and measure the respective mass and energy fluxes. A higher spin strengthens the $B_{phi}$-dominated disk wind along the inner jet. We disentangle a critical resistivity level that leads to a maximum matter and energy output for both, resulting from the interplay between re-connection and diffusion, which in combination govern the magnetic flux and the mass loading. For counter-rotating black holes the outflow structure shows a magnetic field reversal. We estimate the opacity of the inner-most accretion stream and the outflow structure around it. This stream may be critically opaque for a lensed signal, while the axial jet funnel remains optically thin.
Blazars are a sub-category of radio-loud active galactic nuclei with relativistic jets pointing towards the observer. They exhibit non-thermal variable emission, which practically extends over the whole electromagnetic spectrum. Despite the plethora of multi-wavelength observations, the origin of the emission in blazar jets remains an open question. In this work, we construct a two-zone leptonic model: particles accelerate in a small region and lose energy through synchrotron radiation and inverse Compton Scattering. Consequently, the relativistic electrons escape to a larger area where the ambient photon field, which is related to Accretion Disk MHD Winds, could play a central role in the gamma-ray emission. This model explains the Blazar Sequence and the broader properties of blazars, as determined by Fermi observations, by varying only one parameter, the mass accretion rate onto the central black hole. Flat Spectrum Radio Quasars have a strong ambient photon field and their gamma-ray emission is dominated by the more extensive zone, while in the case of BL Lac objects, the negligible ambient photons make the smaller, i.e. acceleration, zone dominant.
125 - R. Moll 2012
The launching process of a magnetically driven outflow from an accretion disk is investigated in a local, shearing box model which allows a study of the feedback between accretion and angular momentum loss. The mass-flux instability found in previous linear analyses of this problem is recovered in a series of 2D (axisymmetric) simulations in the MRI-stable (high magnetic field strength) regime. At low field strengths that are still sufficient to suppress MRI, the instability develops on a short radial length scale and saturates at a modest amplitude. At high field strengths, a long-wavelength clump instability of large amplitude is observed, with growth times of a few orbits. As speculated before, the unstable connection between disk and outflow may be relevant for the time dependence observed in jet-producing disks. The success of the simulations is due in a large part to the implementation of an effective wave-transmitting upper boundary condition.
We explore the poloidal structure of two-dimensional (2D) MHD winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly-ionized ultra-fast outflows (UFOs) in AGN, in a single unifying approach. We present the density $n(r,theta)$, ionization parameter $xi(r,theta)$, and velocity structure $v(r,theta)$ of such ionized winds for typical values of their fluid-to-magnetic flux ratio, $F$, and specific angular momentum, $H$, for which wind solutions become super-Alfvenic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller $H$ show a poloidal geometry of narrower opening angles with their Alfven surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, $r$, and distinct values of $n$, $xi$ and $v$ consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk-winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.
120 - Peter B. Dobbie 2009
It is widely accepted that quasars and other active galactic nuclei (AGN) are powered by accretion of matter onto a central supermassive black hole. While numerical simulations have demonstrated the importance of magnetic fields in generating the tur bulence believed necessary for accretion, so far they have not produced the high mass accretion rates required to explain the most powerful sources. We describe new global 3D simulations we are developing to assess the importance of radiation and non-ideal MHD in generating magnetized outflows that can enhance the overall rates of angular momentum transport and mass accretion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا