ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic quantum effect on hydrogen bond geometry in water dimer

121   0   0.0 ( 0 )
 نشر من قبل Zhigang Wang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During compression of a water dimer calculated with high-precision first-principles methods, the trends of H-bond and O-H bond lengths show quantum effect of the electronic structure. We found that the H-bond length keeps decreasing, while the O-H bond length increases up to the stable point and decreases beyond it when the water dimer is further compressed. The remarkable properties are different from those observed in most previous researches which can be understood and extrapolated through classical simulation. The observations can be explained by the decrease in orbital overlap and change in the exchange repulsion interaction between water monomers. The dominant interaction between water monomers changes from electrostatic interaction to exchange repulsion at the turning point of the O-H bond length when the O...O distance is decreased. These findings highlight the quantum effect on the hydrogen bond in extreme conditions and play an important role in the recognition of the hydrogen bond structure and mechanism.



قيم البحث

اقرأ أيضاً

The many-body polarization energy is the major source of non-additivity in strongly polar systems such as water. This non-additivity is often considerable and must be included, if only in an average manner, to correctly describe the physical properti es of the system. Models for the polarization energy are usually parameterized using experimental data, or theoretical estimates of the many-body effects. Here we show how many-body polarization models can be developed for water complexes using data for the monomer and dimer only using ideas recently developed in the field of intermolecular perturbation theory and state-of-the-art approaches for calculating distributed molecular properties based on the iterated stockholder atoms (ISA) algorithm. We show how these models can be calculated, and validate their accuracy in describing the many-body non-additive energies of a range of water clusters. We further investigate their sensitivity to the details of the polarization damping models used. We show how our very best polarization models yield many-body energies that agree with those computed with coupled-cluster methods, but at a fraction of the computational cost.
209 - Xiangjun Chen , Fang Wu , Mi Yan 2008
Hyperconjugation is a basic conception of chemistry. Its straightforward effect is exhibited by the spatial delocalization characteristics of the electron density distributions or wavefunctions. Such effects on the electron wavefunctions of the highe st-occupied molecular orbitals (HOMO) of two ethanol conformers are demonstrated with electron momentum spectroscopy together with natural bond orbital analyses, exhibiting the distinctly different symmetries of the HOMO wavefunctions in momentum space.
131 - Xuebin Wu , Xianru Hu , Chenlei Du 2010
We report results of both Diffusion Quantum Monte Carlo(DMC) method and Reptation Quantum Monte Carlo(RMC) method on the potential energy curve of the helium dimer. We show that it is possible to obtain a highly accurate description of the helium dim er. An improved stochastic reconfiguration technique is employed to optimize the many-body wave function, which is the starting point for highly accurate simulations based on the Diffusion Quantum Monte Carlo(DMC) and Reptation Quantum Monte Carlo (RMC) methods. We find that the results of these methods are in excellent agreement with the best theoretical results at short range, especially recently developed Reptation Quantum Monte Carlo(RMC) method, yield practically accurate results with reduced statistical error, which gives very excellent agreement across the whole potential. For the equilibrium internuclear distance of 5.6 bohr, the calculated electronic energy with Reptation Quantum Monte Carlo(RMC) method is 5.807483599$pm$0.000000015 hartrees and the corresponding well depth is -11.003$pm$0.005 K.
134 - Le Jin , Xinrui Yang , Yu Zhu 2021
Many studies have revealed that confined water chain flipping is closely related to the spatial size and even quantum effects of the confinement environment. Here, we show that these are not the only factors that affect the flipping process of a conf ined water chain. First-principles calculations and analyses confirm that quantum tunnelling effects from the water chain itself, especially resonant tunnelling, enhance the hydrogen bond rotation process. Importantly, resonant tunnelling can result in tunnelling rotation of hydrogen bonds with a probability close to 1 with only 0.597 eV provided energy. Compared to sequential tunnelling, resonant tunnelling dominants water chain flipping at temperatures up to 20 K higher. Additionally, the ratio of the resonant tunnelling probability to the thermal disturbance probability at 200 K is at least ten times larger than that of sequential tunnelling, which further illustrates the enhancement of hydrogen bond rotation brought about by resonant tunnelling.
Analysis of the electron density distribution in clusters composed of hydrogen fluoride, water, and ammonia molecules, especially within the hydrogen-bond domains, reveals the existence of both sigma- and pi-binding between molecules. The sigma-kind density distribution determines the mutual orientation of molecules. A pi-system may be delocalized conjugated, which provides additional stabilization of molecular clusters. In those clusters where the sequence of hydrogen bonds is not planar, a peculiar kind of pi-conjugation exists. HF anion and H5O2 cation are characterized by quasi-triple bonds between the electronegative atoms. The most long-lived species stabilized by delocalized pi-binding are rings and open or closed hoops composed of fused rings. It is conjugated pi-system that determines cooperativity phenomenon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا