ترغب بنشر مسار تعليمي؟ اضغط هنا

The XXL Survey XXV. Cosmological analysis of the C1 cluster number counts

75   0   0.0 ( 0 )
 نشر من قبل Florian Pacaud
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. We present an estimation of cosmological parameters with clusters of galaxies. Aims. We constrain the $Omega_m$, $sigma_8$, and $w$ parameters from a stand-alone sample of X-ray clusters detected in the 50 deg$^2$ XMM-XXL survey with a well-defined selection function. Methods. We analyse the redshift distribution of a sample comprising 178 high S/N clusters out to a redshift of unity. The cluster sample scaling relations are determined in a self-consistent manner. Results. In a lambda cold dark matter ($Lambda$CDM) model, the cosmology favoured by the XXL clusters compares well with results derived from the Planck S-Z clusters for a totally different sample (mass/redshift range, selection biases, and scaling relations). However, with this preliminary sample and current mass calibration uncertainty, we find no inconsistency with the Planck CMB cosmology. If we relax the $w$ parameter, the Planck CMB uncertainties increase by a factor of $sim$10 and become comparable with those from XXL clusters. Combining the two probes allows us to put constraints on $Omega_m$=0.316$pm$0.060, $sigma_8$=0.814$pm$0.054, and $w$=-1.02$pm$0.20. Conclusions. This first self-consistent cosmological analysis of a sample of serendipitous XMM clusters already provides interesting insights into the constraining power of the XXL survey. Subsequent analysis will use a larger sample extending to lower confidence detections and include additional observable information, potentially improving posterior uncertainties by roughly a factor of 3.



قيم البحث

اقرأ أيضاً

Sunyaev-Zeldovich (SZ) surveys are promising probes of cosmology - in particular for Dark Energy (DE) -, given their ability to find distant clusters and provide estimates for their mass. However, current SZ catalogs contain tens to hundreds of objec ts and maximum likelihood estimators may present biases for such sample sizes. In this work we use the Monte Carlo approach to determine the presence of bias on cosmological parameter estimators from cluster abundance as a function of the area and depth of the survey, and the number of cosmological parameters fitted. Assuming perfect knowledge of mass and redshift some estimators have non-negligible biases. For example, the bias of $sigma_8$ corresponds to about $40%$ of its statistical error bar when fitted together with $Omega_c$ and $w_0$. Including a SZ mass-observable relation decreases the relevance of the bias, for the typical sizes of current surveys. The biases become negligible when combining the SZ data with other cosmological probes. However, we show that the biases from SZ estimators do not go away with increasing sample sizes and they may become the dominant source of error for an all sky survey at the South Pole Telescope (SPT) sensitivity. The results of this work validate the use of the current maximum likelihood methods for present SZ surveys, but highlight the need for further studies for upcoming experiments. [abridged]
In the currently debated context of using clusters of galaxies as cosmological probes, the need for well-defined cluster samples is critical. The XXL Survey has been specifically designed to provide a well characterised sample of some 500 X-ray detec ted clusters suitable for cosmological studies. The main goal of present article is to make public and describe the properties of the cluster catalogue in its present state, as well as of associated catalogues as super-clusters and fossil groups. We release a sample containing 365 clusters in total. We give the details of the follow-up observations and explain the procedure adopted to validate the cluster spectroscopic redshifts. Considering the whole XXL cluster sample, we have provided two types of selection, both complete in a particular sense: one based on flux-morphology criteria, and an alternative based on the [0.5-2] keV flux within one arcmin of the cluster centre. We have also provided X-ray temperature measurements for 80$%$ of the clusters having a flux larger than 9$times$10$^{-15}$$rm thinspace erg , s^{-1} , cm^{-2}$. Our cluster sample extends from z$sim$0 to z$sim$1.2, with one cluster at z$sim$2. Clusters were identified through a mean number of six spectroscopically confirmed cluster members. Our updated luminosity function and luminosity-temperature relation are compatible with our previous determinations based on the 100 brightest clusters, but show smaller uncertainties. We also present an enlarged list of super-clusters and a sample of 18 possible fossil groups. This intermediate publication is the last before the final release of the complete XXL cluster catalogue when the ongoing C2 cluster spectroscopic follow-up is complete. It provides a unique inventory of medium-mass clusters over a 50~dd area out to z$sim$1.
232 - Xinyu Dai 2015
The Swift AGN and Cluster Survey (SACS) uses 125 deg^2 of Swift XRT serendipitous fields with variable depths surrounding gamma-ray bursts to provide a medium depth (4e-15 erg/s/cm^2) and area survey filling the gap between deep, narrow Chandra/XMM-N ewton surveys and wide, shallow ROSAT surveys. Here we present a catalog of 22,563 point sources and 442 extended sources and examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. We use Wise mid-infrared (MIR) colors to classify the sources. For AGN we can roughly separate the point sources into MIR-red and MIR-blue AGN, finding roughly equal numbers of each type in the soft X-ray band (0.5-2 keV), but fewer MIR-blue sources in the hard X-ray band (2-8 keV). The cluster number counts, with 5% uncertainties from cosmic variance, are also consistent with previous surveys but span a much larger continuous flux range. Deep optical or IR follow-up observations of this cluster sample will significantly increase the number of higher redshift (z > 0.5) X-ray-selected clusters.
78 - D. Eckert , S. Ettori , J. Coupon 2015
Traditionally, galaxy clusters have been expected to retain all the material accreted since their formation epoch. For this reason, their matter content should be representative of the Universe as a whole, and thus their baryon fraction should be clo se to the Universal baryon fraction. We make use of the sample of the 100 brightest galaxy clusters discovered in the XXL Survey to investigate the fraction of baryons in the form of hot gas and stars in the cluster population. We measure the gas masses of the detected halos and use a mass--temperature relation directly calibrated using weak-lensing measurements for a subset of XXL clusters to estimate the halo mass. We find that the weak-lensing calibrated gas fraction of XXL-100-GC clusters is substantially lower than was found in previous studies using hydrostatic masses. Our best-fit relation between gas fraction and mass reads $f_{rm gas,500}=0.055_{-0.006}^{+0.007}left(M_{rm 500}/10^{14}M_odotright)^{0.21_{-0.10}^{+0.11}}$. The baryon budget of galaxy clusters therefore falls short of the Universal baryon fraction by about a factor of two at $r_{rm 500}$. Our measurements require a hydrostatic bias $1-b=M_X/M_{rm WL}=0.72_{-0.07}^{+0.08}$ to match the gas fraction obtained using lensing and hydrostatic equilibrium. Comparing our gas fraction measurements with the expectations from numerical simulations, our results favour an extreme feedback scheme in which a significant fraction of the baryons are expelled from the cores of halos. This model is, however, in contrast with the thermodynamical properties of observed halos, which might suggest that weak-lensing masses are overestimated. We note that a mass bias $1-b=0.58$ as required to reconcile Planck CMB and cluster counts should translate into an even lower baryon fraction, which poses a major challenge to our current understanding of galaxy clusters. [Abridged]
Context. Scaling relations between cluster properties embody the formation and evolution of cosmic structure. Intrinsic scatters and correlations between X-ray properties are determined from merger history, baryonic processes, and dynamical state. Aims. We look for an unbiased measurement of the scatter covariance matrix between the three main X-ray observable quantities attainable in large X-ray surveys -- temperature, luminosity, and gas mass. This also gives us the cluster property with the lowest conditional intrinsic scatter at fixed mass. Methods. Intrinsic scatters and correlations can be measured under the assumption that the observable properties of the intra-cluster medium hosted in clusters are log-normally distributed around power-law scaling relations. The proposed method is self-consistent, based on minimal assumptions, and requires neither the external calibration by weak lensing, dynamical, or hydrostatic masses nor the knowledge of the mass completeness. Results. We analyzed the 100 brightest clusters detected in the XXL Survey and their X-ray properties measured within a fixed radius of 300 kpc. The gas mass is the less scattered proxy (~8%). The temperature (~20%) is intrinsically less scattered than the luminosity (~30%) but it is measured with a larger observational uncertainty. We found some evidence that gas mass, temperature and luminosity are positively correlated. Time-evolutions are in agreement with the self-similar scenario, but the luminosity-temperature and the gas mass-temperature relations are steeper. Conclusions. Positive correlations between X-ray properties can be determined by the dynamical state and the merger history of the halos. The slopes of the scaling relations are affected by radiative processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا