ترغب بنشر مسار تعليمي؟ اضغط هنا

Gas infall in the massive star formation core G192.16-3.84

128   0   0.0 ( 0 )
 نشر من قبل Mengyao Tang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous observations have revealed an accretion disk and outflow motion in high-mass star-forming region G192.16-3.84. While collapse have not been reported before. We present here molecular line and continuum observations toward massive core G192.16-3.84 with the Submillimeter Array. C$^{18}$O(2-1) and HCO$^{+}$(3-2) lines show pronounced blue profiles, indicating gas infalling in this region. This is the first time that the infall motion has been reported in G192.16-3.84 core. Two-layer model fitting gave infall velocities of 2.0$pm$0.2 and 2.8$pm$0.1 km s$^{-1}$. Assuming that the cloud core follows a power-law density profile ($rho$$propto$$r^{1.5}$), the corresponding mass infall rates are (4.7$pm$1.7)$times10^{-3}$ and (6.6$pm$2.1)$times10^{-3}$ M$_{sun}$ yr$^{-1}$ for C$^{18}$O(2-1) and HCO$^{+}$(3-2), respectively. The derived infall rates are in agreement with the turbulent core model and those in other high-mass star-forming regions, suggesting that high accretion rate is a general requirement to form a massive star.



قيم البحث

اقرأ أيضاً

We present the results of astrometic observations of H2O masers associated with the star forming region G192.16-3.84 with the VLBI Exploration of Radio Astrometry (VERA). The H2O masers seem to be associated with two young stellar objects (YSOs) sepa rated by sim1200 AU as reported in previous observations. In the present observations, we successfully detected an annual parallax of 0.66 pm 0.04 mas for the H2 O masers, which corresponds to a distance to G192.16-3.84 of D = 1.52 pm 0.08 kpc from the Sun. The determined distance is shorter than the estimated kinematic distance. Using the annual parallax distance and the estimated parameters of the millimeter continuum emission, we estimate the mass of the disk plus circumstellar cloud in the southern young stellar object to be 10.0+4.3Mcdot. We also estimate the galactocentric distance and the peculiar motion -3.6 of G192.16-3.84, relative to a circular Galactic rotation: Rstar = 9.99 pm 0.08 kpc, Zstar = -0.10 pm 0.01 kpc, and (Ustar,Vstar,Wstar)=(-2.8pm1.0,-10.5pm0.3,4.9pm2.7)[kms-1]respectively. The peculiar motion of G192.16-3.84 is within that typically found in recent VLBI astrometric results. The angular distribution and three-dimensional velocity field of H2O maser features associated with the northern YSO indicate the existence of a bipolar outflow with a major axis along the northeast-southwest direction.
162 - K. L. J. Rygl 2012
The onset of massive star formation is not well understood because of observational and theoretical difficulties. To find the dense and cold clumps where massive star formation can take place, we compiled a sample of high infrared extinction clouds, which were observed previously by us in the 1.2 mm continuum emission and ammonia. We try to understand the star-formation stages of the clumps in these high extinction clouds by studying the infall and outflow properties, the presence of a young stellar object (YSO), and the level of the CO depletion through a molecular line survey with the IRAM 30m and APEX 12m telescopes. Moreover, we want to know if the cloud morphology, quantified through the column density contrast between the clump and the clouds, has an impact on the star formation occurring inside it. We find that the HCO+(1-0) line is the most sensitive for detecting infalling motions. SiO, an outflow tracer, was mostly detected toward sources with infall, indicating that infall is accompanied by collimated outflows. The presence of YSOs within a clump depends mostly on its column density; no signs of YSOs were found below 4E22 cm-2. Star formation is on the verge of beginning in clouds that have a low column density contrast; infall is not yet present in the majority of the clumps. The first signs of ongoing star formation are broadly observed in clouds where the column density contrast between the clump and the cloud is higher than two; most clumps show infall and outflow. Finally, the most evolved clumps are in clouds that have a column density contrast higher than three; almost all clumps have a YSO, and in many clumps, the infall has already halted. Hence, the cloud morphology, based on the column density contrast between the cloud and the clumps, seems to have a direct connection with the evolutionary stage of the objects forming inside.
129 - D.S. Shepherd 2004
We have observed the massive star forming region associated with the early B protostar G192.16-3.84 in NH3(1,1), 22.2 GHz water masers, 1.3 cm continuum emission, and at 850 microns. The dense gas associated with G192.16 is clumpy, optically thin, an d has a mass of 0.9 Msun. The ammonia core is gravitationally unstable which may signal that the outflow phase of this system is coming to an end. Water masers trace an ionized jet 0.8 (1600 AU at a distance of 2 kpc) north of G192.16. Masers are also located within 500 AU of G192.16, their velocity distribution is consistent with but does not strongly support the interpretation that the maser emission arises in a 1000 AU rotating disk centered on G192.16. Roughly 30 south of G192.16 (0.3 pc) is a compact, optically thick (optical depth = 1.2) ammonia core (called G192 S3) with an estimated mass of 2.6 Msun. Based on the presence of 850 micron and 1.2 mm continuum emission, G192 S3 probably harbors a very young, low-mass protostar or proto-cluster. The dense gas in the G192 S3 core is likely to be gravitationally bound and may represent the next site of star formation in this region.
The enormous radiative and mechanical luminosities of massive stars impact a vast range of scales and processes, from the reionization of the universe, to the evolution of galaxies, to the regulation of the interstellar medium, to the formation of st ar clusters, and even to the formation of planets around stars in such clusters. Two main classes of massive star formation theory are under active study, Core Accretion and Competitive Accretion. In Core Accretion, the initial conditions are self-gravitating, centrally concentrated cores that condense with a range of masses from the surrounding, fragmenting clump environment. They then undergo relatively ordered collapse via a central disk to form a single star or a small-N multiple. In this case, the pre-stellar core mass function has a similar form to the stellar initial mass function. In Competitive Accretion, the material that forms a massive star is drawn more chaotically from a wider region of the clump without passing through a phase of being in a massive, coherent core. In this case, massive star formation must proceed hand in hand with star cluster formation. If stellar densities become very high near the cluster center, then collisions between stars may also help to form the most massive stars. We review recent theoretical and observational progress towards understanding massive star formation, considering physical and chemical processes, comparisons with low and intermediate-mass stars, and connections to star cluster formation.
In this work, we aim to characterise high-mass clumps with infall motions. We selected 327 clumps from the Millimetre Astronomy Legacy Team 90-GHz (MALT90) survey, and identified 100 infall candidates. Combined with the results of He et al. (2015), w e obtained a sample of 732 high-mass clumps, including 231 massive infall candidates and 501 clumps where infall is not detected. Objects in our sample were classified as pre-stellar, proto-stellar, HII or photo-dissociation region (PDR). The detection rates of the infall candidates in the pre-stellar, proto-stellar, HII and PDR stages are 41.2%, 36.6%, 30.6% and 12.7%, respectively. The infall candidates have a higher H$_{2}$ column density and volume density compared with the clumps where infall is not detected at every stage. For the infall candidates, the median values of the infall rates at the pre-stellar, proto-stellar, HII and PDR stages are 2.6$times$10$^{-3}$, 7.0$times$10$^{-3}$, 6.5$times$10$^{-3}$ and 5.5$times$10$^{-3}$ M$_odot$ yr$^{-1}$, respectively. These values indicate that infall candidates at later evolutionary stages are still accumulating material efficiently. It is interesting to find that both infall candidates and clumps where infall is not detected show a clear trend of increasing mass from the pre-stellar to proto-stellar, and to the HII stages. The power indices of the clump mass function (ClMF) are 2.04$pm$0.16 and 2.17$pm$0.31 for the infall candidates and clumps where infall is not detected, respectively, which agree well with the power index of the stellar initial mass function (2.35) and the cold Planck cores (2.0).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا