ﻻ يوجد ملخص باللغة العربية
We present an analysis of the molecular gas properties, based on CO(2 - 1) emission, of twelve starburst galaxies at z~1.6 selected by having a boost (>~4x) in their star formation rate (SFR) above the average star-forming galaxy at an equivalent stellar mass. ALMA observations are acquired of six additional galaxies than previously reported through our effort. As a result of the larger statistical sample, we significantly detect, for the first time at high-z, a systematically lower L_CO/L_IR ratio in galaxies lying above the star-forming `main sequence (MS). Based on an estimate of alpha_CO (i.e., the ratio of molecular gas mass to L_CO(1-0)), we convert the observational quantities (e.g., L_CO/L_IR) to physical units (M_gas/SFR) that represent the gas depletion time or its inverse, the star formation efficiency. We interpret the results as indicative of the star formation efficiency increasing in a continuous fashion from the MS to the starburst regime, whereas the gas fractions remain comparable to those of MS galaxies. Although, the balance between an increase in star-formation efficiency or gas fraction depends on the adopted value of alpha_CO as discussed.
The standard AGN-galaxy co-evolutionary scenario predicts a phase of deeply buried supermassive black hole growth coexisting with a starburst (SB) before feedback phenomena deplete the cold molecular gas reservoir of the galaxy and an optically lumin
We present the first spatially-resolved observations of molecular gas in a sample of cluster galaxies beyond z>0.1. Using ALMA, we detect CO (2-1) in 8 z~1.6 cluster galaxies, all within a single 70 primary beam, in under 3 hours of integration time.
Gas outflows are believed to play a pivotal role in shaping galaxies, as they regulate both star formation and black hole growth. Despite their ubiquitous presence, the origin and the acceleration mechanism of such powerful and extended winds is not
We present a detailed study of the molecular gas content and stellar population properties of three massive galaxies at 1 < z < 1.3 that are in different stages of quenching. The galaxies were selected to have a quiescent optical/near-infrared spectr
We present ALMA observations of cold dust and molecular gas in four high-luminosity, heavily reddened (A$_{rm{V}} sim 2.5-6$ mag) Type 1 quasars at $zsim2.5$ with virial M$_{rm{BH}} sim 10^{10}$M$_odot$, to test whether dusty, massive quasars represe