ﻻ يوجد ملخص باللغة العربية
Water exchange reactions around ionic solutes are ubiquitous in aqueous solution-phase chemistry. However, the extreme sensitivity of exchange rates to perturbations in the chemistry of an ionic solute is not well understood. We examine water exchange around model ions within the language of dynamic facilitation theory, typically used to describe glassy and other systems with collective, facilitated dynamics. Through the development of a coarse-grained, kinetically-constrained lattice model of water exchange, we show that the timescale for water exchange scales exponentially with the strength of the solute-solvent interactions.
Among the many existing molecular models of water, the MB-pol many-body potential has emerged as a remarkably accurate model, capable of reproducing thermodynamic, structural, and dynamic properties across waters solid, liquid, and vapor phases. In t
We estimated the residual entropy of ice Ih by the recently developed simulation protocol, namely, the combination of Replica-Exchange Wang-Landau algorithm and Multicanonical Replica-Exchange Method. We employed a model with the nearest neighbor int
We consider the first-passage problem for $N$ identical independent particles that are initially released uniformly in a finite domain $Omega$ and then diffuse toward a reactive area $Gamma$, which can be part of the outer boundary of $Omega$ or a re
Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account th
We develop a novel method of replica-exchange molecular dynamics (REMD) simulation, mass-scaling REMD (MSREMD) method, which improves trajectory accuracy at high temperatures, and thereby contributes to numerical stability. In addition, the MSREMD me