ﻻ يوجد ملخص باللغة العربية
Coherent errors are a dominant noise process in many quantum computing architectures. Unlike stochastic errors, these errors can combine constructively and grow into highly detrimental overrotations. To combat this, we introduce a simple technique for suppressing systematic coherent errors in low-density parity-check (LDPC) stabilizer codes, which we call stabilizer slicing. The essential idea is to slice low-weight stabilizers into two equally-weighted Pauli operators and then apply them by rotating in opposite directions, causing their overrotations to interfere destructively on the logical subspace. With access to native gates generated by 3-body Hamiltonians, we can completely eliminate purely coherent overrotation errors, and for overrotation noise of 0.99 unitarity we achieve a 135-fold improvement in the logical error rate of Surface-17. For more conventional 2-body ion trap gates, we observe an 89-fold improvement for Bacon-Shor-13 with purely coherent errors which should be testable in near-term fault-tolerance experiments. This second scheme takes advantage of the prepared gauge degrees of freedom, and to our knowledge is the first example in which the state of the gauge directly affects the robustness of a codes memory. This work demonstrates that coherent noise is preferable to stochastic noise within certain code and gate implementations when the coherence is utilized effectively.
We present an algorithm for manipulating quantum information via a sequence of projective measurements. We frame this manipulation in the language of stabilizer codes: a quantum computation approach in which errors are prevented and corrected in part
It is proved in this work that exhaustively determining bad patterns in arbitrary, finite low-density parity-check (LDPC) codes, including stopping sets for binary erasure channels (BECs) and trapping sets (also known as near-codewords) for general m
Adiabatic quantum computing (AQC) can be protected against thermal excitations via an encoding into error detecting codes, supplemented with an energy penalty formed from a sum of commuting Hamiltonian terms. Earlier work showed that it is possible t
Quantum error-correcting codes are used to protect qubits involved in quantum computation. This process requires logical operators, acting on protected qubits, to be translated into physical operators (circuits) acting on physical quantum states. We
Reliable models of a large variety of open quantum systems can be described by Lindblad master equation. An important property of some open quantum systems is the existence of decoherence-free subspaces. In this paper, we develop tools for constructi