ﻻ يوجد ملخص باللغة العربية
The scope of this work is twofold: On the one hand, strongly motivated by emerging engineering issues in multiple access communication systems, we investigate the performance of a slotted-time relay-assisted cooperative random access wireless network with collisions and with join the shortest queue relay-routing protocol. For this model, we investigate the stability condition, and apply different methods to derive the joint equilibrium distribution of the queue lengths. On the other hand, using the cooperative communication system as a vehicle for illustration, we investigate and compare three different approaches for this type of multi-dimensional stochastic processes, namely the compensation approach, the power series algorithm (PSA), and the probability generating function (PGF) approach. We present an extensive numerical comparison of the compensation approach and PSA, and discuss which method performs better in terms of accuracy and computation time. We also provide details on how to compute the PGF in terms of a solution of a Riemann-Hilbert boundary value problem.
This paper investigates a partially observable queueing system with $N$ nodes in which each node has a dedicated arrival stream. There is an extra arrival stream to balance the load of the system by routing its customers to the shortest queue. In add
We study a single-server Markovian queueing model with $N$ customer classes in which priority is given to the shortest queue. Under a critical load condition, we establish the diffusion limit of the workload and queue length processes in the form of
In this paper we revisit the Markovian queueing system with a single server, infinite capacity queue and the special queue skipping policy. Customers arrive in batches, but are served one by one according to any conservative discipline. The size of t
We study a generalization of the $M/G/1$ system (denoted by $rM/G/1$) with independent and identically distributed (iid) service times and with an arrival process whose arrival rate $lambda_0f(r)$ depends on the remaining service time $r$ of the curr
Let $(M,g_1)$ be a complete $d$-dimensional Riemannian manifold for $d > 1$. Let $mathcal X_n$ be a set of $n$ sample points in $M$ drawn randomly from a smooth Lebesgue density $f$ supported in $M$. Let $x,y$ be two points in $M$. We prove that the