ترغب بنشر مسار تعليمي؟ اضغط هنا

Infinitely Generated virtually free pro-$p$ groups and $p$-adic representations

101   0   0.0 ( 0 )
 نشر من قبل Pavel Zalesski
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Pavel Zalesskii




اسأل ChatGPT حول البحث

We prove the pro-$p$ version of the Karras, Pietrowski, Solitar, Cohen and Scott result stating that a virtually free group acts on a tree with finite vertex stabilizers. If a virtually free pro-$p$ group $G$ has finite centralizes of all non-trivial torsion elements more stronger statement is proved: $G$ embeds into a free pro-$p$ product of a free pro-$p$ group and finite $p$-group. The integral $p$-adic representation theory is used in the proof; it replaces the Stallings theory of ends in the pro-$p$ case.



قيم البحث

اقرأ أيضاً

The authors have shown previously that every locally pro-p contraction group decomposes into the direct product of a p-adic analytic factor and a torsion factor. It has long been known that p-adic analytic contraction groups are nilpotent. We show he re that the torsion factor is nilpotent too, and hence that every locally pro-p contraction group is nilpotent.
We show that for every finitely generated closed subgroup $K$ of a non-solvable Demushkin group $G$, there exists an open subgroup $U$ of $G$ containing $K$, and a continuous homomorphism $tau colon U to K$ satisfying $tau(k) = k$ for every $k in K$. We prove that the intersection of a pair of finitely generated closed subgroups of a Demushkin group is finitely generated (giving an explicit bound on the number of generators). Furthermore, we show that these properties of Demushkin groups are preserved under free pro-$p$ products, and deduce that Howsons theorem holds for the Sylow subgroups of the absolute Galois group of a number field. Finally, we confirm two conjectures of Ribes, thus classifying the finitely generated pro-$p$ M. Hall groups.
We study 3-dimensional Poincare duality pro-$p$ groups in the spirit of the work by Robert Bieri and Jonathan Hillmann, and show that if such a pro-$p$ group $G$ has a nontrivial finitely presented subnormal subgroup of infinite index, then either th e subgroup is cyclic and normal, or the subgroup is cyclic and the group is polycyclic, or the subgroup is Demushkin and normal in an open subgroup of $G$. Also, we describe the centralizers of finitely generated subgroups of 3-dimensional Poincare duality pro-$p$ groups.
We completely describe the finitely generated pro-$p$ subgroups of the profinite completion of the fundamental group of an arbitrary $3$-manifold. We also prove a pro-$p$ analogue of the main theorem of Bass--Serre theory for finitely generated pro-$p$ groups.
We initiate an investigation of lattices in a new class of locally compact groups, so called locally pro-$p$-complete Kac-Moody groups. We discover that in rank 2 their cocompact lattices are particularly well-behaved: under mild assumptions, a cocom pact lattice in this completion contains no elements of order $p$. This statement is still an open question for the Caprace-Remy-Ronan completion. Using this, modulo results of Capdeboscq and Thomas, we classify edge-transitive cocompact lattices and describe a cocompact lattice of minimal covolume.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا