ترغب بنشر مسار تعليمي؟ اضغط هنا

High accuracy measurement of gravitational wave back-reaction in the OJ287 black hole binary

108   0   0.0 ( 0 )
 نشر من قبل Mauri Valtonen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Blazar OJ287 exhibits large thermal flares at least twice every 12 years. The times of these flares have been predicted successfully using the model of a quasi-Keplerian eccentric black hole binary where the secondary impacts the accretion disk of the primary, creating the thermal flares. New measurements of the historical light curve have been combined with the observations of the 2015 November/December flare to identify the impact record since year 1886, and to constrain the orbit of the binary. The orbit solution shows that the binary period, now 12.062 year, is decreasing at the rate of 36 days per century. This corresponds to an energy loss to gravitational waves that is 6.5 +- 4 % less than the rate predicted by the standard quadrupolar gravitational wave (GW) emission. We show that the difference is due to higher order gravitational radiation reaction terms that include the dominant order tail contributions.



قيم البحث

اقرأ أيضاً

This document illustrates the feasibility of a few per cent level measurement of the local black hole occupation fraction in low mass galaxies through wide-field, high angular resolution X-ray imaging observations of local volume galaxies. The occupa tion fraction, particularly at the low end of the galaxy luminosity function, is a key benchmark for any model which aims to reproduce the formation and growth of super-massive black holes and their host galaxies. Our proposed measurement will complement orthogonal efforts that are planned in X-rays at high red-shifts, as well as in the local Universe with ground-based facilities.
We report the first plausible optical electromagnetic (EM) counterpart to a (candidate) binary black hole (BBH) merger. Detected by the Zwicky Transient Facility (ZTF), the EM flare is consistent with expectations for a kicked BBH merger in the accre tion disk of an active galactic nucleus (AGN), and is unlikely ($<O(0.01%$)) due to intrinsic variability of this source. The lack of color evolution implies that it is not a supernovae and instead is strongly suggestive of a constant temperature shock. Other false-positive events, such as microlensing or a tidal disruption event, are ruled out or constrained to be $<O(0.1%$). If the flare is associated with S190521g, we find plausible values of: total mass $ M_{rm BBH} sim 100 M_{odot}$, kick velocity $v_k sim 200, {rm km}, {rm s}^{-1}$ at $theta sim 60^{circ}$ in a disk with aspect ratio $H/a sim 0.01$ (i.e., disk height $H$ at radius $a$) and gas density $rho sim 10^{-10}, {rm g}, {rm cm}^{-3}$. The merger could have occurred at a disk migration trap ($a sim 700, r_{g}$; $r_g equiv G M_{rm SMBH} / c^2$, where $M_{rm SMBH}$ is the mass of the AGN supermassive black hole). The combination of parameters implies a significant spin for at least one of the black holes in S190521g. The timing of our spectroscopy prevents useful constraints on broad-line asymmetry due to an off-center flare. We predict a repeat flare in this source due to a re-encountering with the disk in $sim 1.6, {rm yr}, (M_{rm SMBH}/10^{8}M_{odot}), (a/10^{3}r_{g})^{3/2}$.
267 - Marc Favata 2009
Some astrophysical sources of gravitational waves can produce a memory effect, which causes a permanent displacement of the test masses in a freely falling gravitational-wave detector. The Christodoulou memory is a particularly interesting nonlinear form of memory that arises from the gravitational-wave stress-energy tensors contribution to the distant gravitational-wave field. This nonlinear memory contributes a nonoscillatory component to the gravitational-wave signal at leading (Newtonian-quadrupole) order in the waveform amplitude. Previous computations of the memory and its detectability considered only the inspiral phase of binary black hole coalescence. Using an effective-one-body (EOB) approach calibrated to numerical relativity simulations, as well as a simple fully analytic model, the Christodoulou memory is computed for the inspiral, merger, and ringdown. The memory will be very difficult to detect with ground-based interferometers, but is likely to be observable in supermassive black hole mergers with LISA out to a redshift of two. Detection of the nonlinear memory could serve as an experimental test of the ability of gravity to gravitate.
The nanohertz gravitational wave background (GWB) is believed to be dominated by GW emission from supermassive black hole binaries (SMBHBs). Observations of several dual active galactic nuclei (AGN) strongly suggest a link between AGN and SMBHBs, giv en that these dual AGN systems will eventually form bound binary pairs. Here we develop an exploratory SMBHB population model based on empirically constrained quasar populations, allowing us to decompose the GWB amplitude into an underlying distribution of SMBH masses, SMBHB number density, and volume enclosing the GWB. Our approach also allows us to self-consistently predict the GWB amplitude and the number of local SMBHB systems. Interestingly, we find the local number density of SMBHBs implied by the common-process signal in the NANOGrav 12.5-yr dataset to be roughly five times larger than previously predicted by other models. We also find that at most $sim 25 %$ of SMBHBs can be associated with quasars. Furthermore, our quasar-based approach predicts $gtrsim 95%$ of the GWB signal comes from $z lesssim 2.5$, and that SMBHBs contributing to the GWB have masses $gtrsim 10^8 M_odot$. We also explore how different empirical galaxy-black hole scaling relations affect the local number density of GW sources, and find that relations predicting more massive black holes decrease the local number density of SMBHBs. Overall, our results point to the important role that a measurement of the GWB will play in directly constraining the cosmic population of SMBHBs, as well as their connections to quasars and galaxy mergers.
104 - E. J. Howell , M. L. Chan , Q. Chu 2017
The detection of three black hole binary coalescence events by Advanced LIGO allows the science benefits of future detectors to be evaluated. In this paper we report the science benefits of one or two 8km arm length detectors based on the doubling of key parameters in an advanced LIGO type detector, combined with realisable enhancements. It is shown that the total detection rate for sources similar to those already detected, would increase to $sim$ 10$^{3}$--10$^{5}$ per year. Within 0.4Gpc we find that around 10 of these events would be localizable to within $sim 10^{-1}$ deg$^2$. This is sufficient to make unique associations or to rule out a direct association with the brightest galaxies in optical surveys (at r-band magnitudes of 17 or above) or for deeper limits (down to r-band magnitudes of 20) yield statistically significant associations. The combination of angular resolution and event rate would benefit precision testing of formation models, cosmic evolution and cosmological studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا