ﻻ يوجد ملخص باللغة العربية
By a Cantor-like measure we mean the unique self-similar probability measure $mu $ satisfying $mu =sum_{i=0}^{m-1}p_{i}mu circ S_{i}^{-1}$ where $% S_{i}(x)=frac{x}{d}+frac{i}{d}cdot frac{d-1}{m-1}$ for integers $2leq d<mle 2d-1$ and probabilities $p_{i}>0$, $sum p_{i}=1$. In the uniform case ($p_{i}=1/m$ for all $i$) we show how one can compute the entropy and Hausdorff dimension to arbitrary precision. In the non-uniform case we find bounds on the entropy.
In this paper, we are going to discuss the following problem: Let $T$ be a fixed set in $mathbb{R}^n$. And let $S$ and $B$ he two subsets in $mathbb{R}^n$ such that for any $x$ in $S$, there exists an $r$ such that $x+ r T$ is a subset of $B$. How sm
We consider a minimal equicontinuous action of a finitely generated group $G$ on a Cantor set $X$ with invariant probability measure $mu$, and stabilizers of points for such an action. We give sufficient conditions under which there exists a subgroup
We study the orthogonal polynomials associated with the equilibrium measure, in logarithmic potential theory, living on the attractor of an Iterated Function System. We construct sequences of discrete measures, that converge weakly to the equilibrium
We study the Gromov waist in the sense of $t$-neighborhoods for measures in the Euclidean space, motivated by the famous theorem of Gromov about the waist of radially symmetric Gaussian measures. In particular, it turns our possible to extend Gromovs
In this paper, we use the linear programming approach to find new upper bounds for the moments of isotropic measures. These bounds are then utilized for finding lower packing bounds and energy bounds for projective codes. We also show that the obtain