ﻻ يوجد ملخص باللغة العربية
Classification of transient and variable light curves is an essential step in using astronomical observations to develop an understanding of their underlying physical processes. However, upcoming deep photometric surveys, including the Large Synoptic Survey Telescope (LSST), will produce a deluge of low signal-to-noise data for which traditional labeling procedures are inappropriate. Probabilistic classification is more appropriate for the data but are incompatible with the traditional metrics used on deterministic classifications. Furthermore, large survey collaborations intend to use these classification probabilities for diverse science objectives, indicating a need for a metric that balances a variety of goals. We describe the process used to develop an optimal performance metric for an open classification challenge that seeks probabilistic classifications and must serve many scientific interests. The Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC) is an open competition aiming to identify promising techniques for obtaining classification probabilities of transient and variable objects by engaging a broader community both within and outside astronomy. Using mock classification probability submissions emulating archetypes of those anticipated of PLAsTiCC, we compare the sensitivity of metrics of classification probabilities under various weighting schemes, finding that they yield qualitatively consistent results. We choose as a metric for PLAsTiCC a weighted modification of the cross-entropy because it can be meaningfully interpreted. Finally, we propose extensions of our methodology to ever more complex challenge goals and suggest some guiding principles for approaching the choice of a metric of probabilistic classifications.
Next-generation surveys like the Legacy Survey of Space and Time (LSST) on the Vera C. Rubin Observatory will generate orders of magnitude more discoveries of transients and variable stars than previous surveys. To prepare for this data deluge, we de
We describe the simulated data sample for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC), a publicly available challenge to classify transient and variable events that will be observed by the Large Synoptic Survey T
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will b
Space-based transit missions such as Kepler and TESS have demonstrated that planets are ubiquitous. However, the success of these missions heavily depends on ground-based radial velocity (RV) surveys, which combined with transit photometry can yield
Supernova (SN) classification and redshift estimation using photometric data only have become very important for the Large Synoptic Survey Telescope (LSST), given the large number of SNe that LSST will observe and the impossibility of spectroscopical