ﻻ يوجد ملخص باللغة العربية
Spin-orbit coupling fundamentally alters spin qubits, opening pathways to improve the scalability of quantum computers via long distance coupling mediated by electric fields, photons, or phonons. It also allows for new engineered hybrid and topological quantum systems. However, spin qubits with intrinsic spin-orbit coupling are not yet viable for quantum technologies due to their short ($sim1~mu$s) coherence times $T_2$, while qubits with long $T_2$ have weak spin-orbit coupling making qubit coupling short-ranged and challenging for scale-up. Here we show that an intrinsic spin-orbit coupled generalised spin with total angular momentum $J=tfrac{3}{2}$, which is defined by holes bound to boron dopant atoms in strained $^{28}mathrm{Si}$, has $T_2$ rivalling the electron spins of donors and quantum dots in $^{28}mathrm{Si}$. Using pulsed electron paramagnetic resonance, we obtain $0.9~mathrm{ms}$ Hahn-echo and $9~mathrm{ms}$ dynamical decoupling $T_2$ times, where strain plays a key role to reduce spin-lattice relaxation and the longitudinal electric coupling responsible for decoherence induced by electric field noise. Our analysis shows that transverse electric dipole can be exploited for electric manipulation and qubit coupling while maintaining a weak longitudinal coupling, a feature of $J=tfrac{3}{2}$ atomic systems with a strain engineered quadrupole degree of freedom. These results establish single-atom hole spins in silicon with quantised total angular momentum, not spin, as a highly coherent platform with tuneable intrinsic spin-orbit coupling advantageous to build artificial quantum systems and couple qubits over long distances.
We study the coherence times and perform manipulations on the lowest-energy states of trivalent cerium ion in calcium tungstate crystal. We find the phase memory time reaching 14.2 ${mu}$s and the time of coherent manipulations reaching 0.3 ${mu}$s i
For the realisation of scalable solid-state quantum-bit systems, spins in semiconductor quantum dots are promising candidates. A key requirement for quantum logic operations is a sufficiently long coherence time of the spin system. Recently, hole spi
We map electron spin dynamics from time to space in quantum wires with spatially uniform and oscillating Rashba spin-orbit coupling. The presence of the spin-orbit interaction introduces pseudo-Zeeman couplings of the electron spins to effective magn
Strong magnetic field gradients can produce a synthetic spin-orbit interaction that allows for high fidelity electrical control of single electron spins. We investigate how a field gradient impacts the spin relaxation time T_1 by measuring T_1 as a f
The spin-orbit coupling (SOC) can mediate electric-dipole spin resonance (EDSR) in an a.c. electric field. In this letter, the EDSR is essentially understood as an spin precession under an effective a.c. magnetic field induced by the SOC in the refer