ترغب بنشر مسار تعليمي؟ اضغط هنا

Stormy weather in 3C 196.1: nuclear outbursts and merger events shape the environment of the hybrid radio galaxy 3C 196.1

69   0   0.0 ( 0 )
 نشر من قبل Federica Ricci
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Ricci




اسأل ChatGPT حول البحث

We present a multi-wavelength analysis based on archival radio, optical and X-ray data of the complex radio source 3C 196.1, whose host is the brightest cluster galaxy of a $z=0.198$ cluster. HST data show H$alpha$+[N II] emission aligned with the jet 8.4 GHz radio emission. An H$alpha$+[N II] filament coincides with the brightest X-ray emission, the northern hotspot. Analysis of the X-ray and radio images reveals cavities located at galactic- and cluster- scales. The galactic-scale cavity is almost devoid of 8.4 GHz radio emission and the south-western H$alpha$+[N II] emission is bounded (in projection) by this cavity. The outer cavity is co-spatial with the peak of 147 MHz radio emission, and hence we interpret this depression in X-ray surface brightness as being caused by a buoyantly rising bubble originating from an AGN outburst $sim$280 Myrs ago. A textit{Chandra} snapshot observation allowed us to constrain the physical parameters of the cluster, which has a cool core with a low central temperature $sim$2.8 keV, low central entropy index $sim$13 keV cm$^2$ and a short cooling time of $sim$500 Myr, which is $<0.05$ of the age of the Universe at this redshift. By fitting jumps in the X-ray density we found Mach numbers between 1.4 and 1.6, consistent with a shock origin. We also found compelling evidence of a past merger, indicated by a morphology reminiscent of gas sloshing in the X-ray residual image. Finally, we computed the pressures, enthalpies $E_{cav}$ and jet powers $P_{jet}$ associated with the cavities: $E_{cav}sim7times10^{58}$ erg, $P_{jet}sim1.9times10^{44}$ erg s$^{-1}$ for the inner cavity and $E_{cav}sim3times10^{60}$ erg, $P_{jet}sim3.4times10^{44}$ erg s$^{-1}$ for the outer cavity.



قيم البحث

اقرأ أيضاً

We present the results from a joint Suzaku/NuSTAR broad-band spectral analysis of 3C 390.3. The high quality data enables us to clearly separate the primary continuum from the reprocessed components allowing us to detect a high energy spectral cut-of f ($E_text{cut}=117_{-14}^{+18}$ keV), and to place constraints on the Comptonization parameters of the primary continuum for the first time. The hard over soft compactness is 69$_{-24}^{+124}$ and the optical depth 4.1$_{-3.6}^{+0.5}$, this leads to an electron temperature of $30_{-8}^{+32}$ keV. Expanding our study of the Comptonization spectrum to the optical/UV by studying the simultaneous Swift-UVOT data, we find indications that the compactness of the corona allows only a small fraction of the total UV/optical flux to be Comptonized. Our analysis of the reprocessed emission show that 3C 390.3 only has a small amount of reflection (R~0.3), and of that the vast majority is from distant neutral matter. However we also discover a soft X-ray excess in the source, which can be described by a weak ionized reflection component from the inner parts of the accretion disk. In addition to the backscattered emission, we also detect the highly ionized iron emission lines Fe XXV and Fe XXVI.
We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 120 between 2002 and 2007 at X-ray, optical, and radio wave bands, as well as imaging with the Very Long Baseline Array (VLBA). Over the 5 yr of observation, signif icant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. Consistent with this, the X-ray flux and 37 GHz flux are anti-correlated with X-ray leading the radio variations. This implies that, in this radio galaxy, the radiative state of accretion disk plus corona system, where the X-rays are produced, has a direct effect on the events in the jet, where the radio emission originates. The X-ray power spectral density of 3C 120 shows a break, with steeper slope at shorter timescale and the break timescale is commensurate with the mass of the central black hole based on observations of Seyfert galaxies and black hole X-ray binaries. These findings provide support for the paradigm that black hole X-ray binaries and active galactic nuclei are fundamentally similar systems, with characteristic time and size scales linearly proportional to the mass of the central black hole. The X-ray and optical variations are strongly correlated in 3C 120, which implies that the optical emission in this object arises from the same general region as the X-rays, i.e., in the accretion disk-corona system. We numerically model multi-wavelength light curves of 3C 120 from such a system with the optical-UV emission produced in the disk and the X-rays generated by scattering of thermal photons by hot electrons in the corona. From the comparison of the temporal properties of the model light curves to that of the observed variability, we constrain the physical size of the corona and the distances of the emitting regions from the central BH.
199 - D.R. Ballantyne 2014
Broad-line radio galaxies (BLRGs) are active galactic nuclei that produce powerful, large-scale radio jets, but appear as Seyfert 1 galaxies in their optical spectra. In the X-ray band, BLRGs also appear like Seyfert galaxies, but with flatter spectr a and weaker reflection features. One explanation for these properties is that the X-ray continuum is diluted by emission from the jet. Here, we present two NuSTAR observations of the BLRG 3C 382 that show clear evidence that the continuum of this source is dominated by thermal Comptonization, as in Seyfert 1 galaxies. The two observations were separated by over a year and found 3C 382 in different states separated by a factor of 1.7 in flux. The lower flux spectrum has a photon-index of $Gamma=1.68^{+0.03}_{-0.02}$, while the photon-index of the higher flux spectrum is $Gamma=1.78^{+0.02}_{-0.03}$. Thermal and anisotropic Comptonization models provide an excellent fit to both spectra and show that the coronal plasma cooled from $kT_e=330pm 30$ keV in the low flux data to $231^{+50}_{-88}$ keV in the high flux observation. This cooling behavior is typical of Comptonizing corona in Seyfert galaxies and is distinct from the variations observed in jet-dominated sources. In the high flux observation, simultaneous Swift data are leveraged to obtain a broadband spectral energy distribution and indicates that the corona intercepts $sim 10$% of the optical and ultraviolet emitting accretion disk. 3C 382 exhibits very weak reflection features, with no detectable relativistic Fe K$alpha$ line, that may be best explained by an outflowing corona combined with an ionized inner accretion disk.
99 - F. Tombesi 2017
We present the spectral analysis of a 200~ks observation of the broad-line radio galaxy 3C~120 performed with the high energy transmission grating (HETG) spectrometer on board the emph{Chandra} X-ray Observatory. We find (i) a neutral absorption comp onent intrinsic to the source with column density of $text{log}N_H = 20.67pm0.05$~cm$^{-2}$, (ii) no evidence for a warm absorber with an upper limit on the column density of just $text{log}N_H < 19.7$~cm$^{-2}$ assuming the typical ionization parameter log$xi$$simeq$2.5~erg~s$^{-1}$~cm, the warm absorber may instead be replaced by (iii) a hot emitting gas with temperature $kT simeq 0.7$~keV observed as soft X-ray emission from ionized Fe L-shell lines which may originate from a kpc scale shocked bubble inflated by the AGN wind or jet with a shock velocity of about 1,000~km~s$^{-1}$ determined by the emission line width, (iv) a neutral Fe K$alpha$ line and accompanying emission lines indicative of a Compton-thick cold reflector with low reflection fraction $Rsimeq0.2$, suggesting a large opening angle of the torus, (v) a highly ionized Fe~XXV emission feature indicative of photoionized gas with ionization parameter log$xi$$=$$3.75^{+0.27}_{-0.38}$~erg~s$^{-1}$~cm and a column density of $text{log}N_H > 22$~cm$^{-2}$ localized within $sim$2~pc from the X-ray source, and (vi) possible signatures for a highly ionized disk wind. Together with previous evidence for intense molecular line emission, these results indicate that 3C~120 is likely a late state merger undergoing strong AGN feedback.
We present results from a deep (174 ks) Chandra observation of the FR-II radio galaxy 3C 220.1, the central brightest cluster galaxy (BCG) of a $kT sim$ 4 keV cluster at $z=0.61$. The temperature of the hot cluster medium drops from $sim5.9$ keV to $ sim3.9$ keV at $sim$ 35 kpc radius, while the temperature at smaller radii may be substantially lower. The central active galactic nucleus (AGN) outshines the whole cluster in X-rays, with a bolometric luminosity of $2.0times10^{46}$ erg s$^{-1}$ ($sim10$% of the Eddington rate). The system shows a pair of potential X-ray cavities $sim35$ kpc east and west of the nucleus. The cavity power is estimated within the range of $1.0times10^{44}$ erg s$^{-1}$ and $1.7times10^{45}$ erg s$^{-1}$, from different methods. The X-ray enhancements in the radio lobes could be due to inverse Compton emission, with a total 2-10 keV luminosity of $sim8.0times10^{42}$ erg s$^{-1}$. We compare 3C 220.1 with other cluster BCGs, including Cygnus A, as there are few BCGs in rich clusters hosting an FR-II galaxy. We also summarize the jet power of FR-II galaxies from different methods. The comparison suggests that the cavity power of FR-II galaxies likely under-estimates the jet power. The properties of 3C 220.1 suggest that it is at the transition stage from quasar-mode feedback to radio-mode feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا