Quantum criticality preempted by nematicity


الملخص بالإنكليزية

Exotic physics often emerges around quantum criticality in metallic systems. Here we explore the nature of topological phase transitions between 3D double-Weyl semimetals and insulators (through annihilating double-Weyl nodes with opposite chiralities) in the presence of Coulomb interactions. From renormalization-group (RG) analysis, we find a non-Fermi-liquid quantum critical point (QCP) between the double-Weyl semimetals and insulators when artificially neglecting short-range interactions. However, it is shown that this non-Fermi-liquid QCP is actually unstable against nematic ordering when short-range interactions are correctly included in the RG analysis. In other words, the putative QCP between the semimetals and insulators is preempted by emergence of nematic phases when Coulomb interactions are present. We further discuss possible experimental relevance of the nematicity-preempted QCP to double-Weyl candidate materials HgCr2Se4 and SrSi2.

تحميل البحث