ﻻ يوجد ملخص باللغة العربية
Exotic physics often emerges around quantum criticality in metallic systems. Here we explore the nature of topological phase transitions between 3D double-Weyl semimetals and insulators (through annihilating double-Weyl nodes with opposite chiralities) in the presence of Coulomb interactions. From renormalization-group (RG) analysis, we find a non-Fermi-liquid quantum critical point (QCP) between the double-Weyl semimetals and insulators when artificially neglecting short-range interactions. However, it is shown that this non-Fermi-liquid QCP is actually unstable against nematic ordering when short-range interactions are correctly included in the RG analysis. In other words, the putative QCP between the semimetals and insulators is preempted by emergence of nematic phases when Coulomb interactions are present. We further discuss possible experimental relevance of the nematicity-preempted QCP to double-Weyl candidate materials HgCr2Se4 and SrSi2.
Quantum phase transitions are a ubiquitous many-body phenomenon that occurs in a wide range of physical systems, including superconductors, quantum spin liquids, and topological materials. However, investigations of quantum critical systems also repr
We investigate theoretically the quantum phase transition (QPT) between the one-channel Kondo (1CK) and two-channel Kondo (2CK) fixed points in a quantum dot coupled to helical edge states of interacting 2D topological insulators (2DTI) with Luttinge
Strongly correlated quantum matter exhibits a rich variety of remarkable properties, but the organizing principles that underlie the behavior remain to be established. Graphene heterostructures, which can host narrow moire electron bands that amplify
In numerical simulations, spontaneously broken symmetry is often detected by computing two-point correlation functions of the appropriate local order parameter. This approach, however, computes the square of the local order parameter, and so when it
Control of quantum coherence in many-body system is one of the key issues in modern condensed matter. Conventional wisdom is that lattice vibration is an innate source of decoherence, and amounts of research have been conducted to eliminate lattice e