ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher angular momentum band inversions in two dimensions

63   0   0.0 ( 0 )
 نشر من قبل J\\\"orn Venderbos
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

A two-dimensional (2D) topological semimetal is characterized by the nodal points in its low-energy band structure. While the linear nodal points have been extensively studied, especially in the context of graphene, the realm beyond linear nodal poin ts remains largely unexplored. Here, we explore the possibility of higher-order nodal points, i.e., points with higher-order energy dispersions, in 2D systems. We perform an exhaustive search over all 80 layer groups both with and without spin-orbit coupling (SOC), and reveal all possible higher-order nodal points. We show that they can be classified into two categories: the quadratic nodal point (QNP) and the cubic nodal point (CNP). All the 2D higher-order nodal points have twofold degeneracy, and the order of dispersion cannot be higher than three. QNPs only exist in the absence of SOC, whereas CNPs only exist in the presence of SOC. Particularly, the CNPs represent a new topological state not known before. We show that they feature nontrivial topological charges, leading to extensive topological edge bands. Our work completely settles the problem of higher-order nodal points, discovers novel topological states in 2D, and provides detailed guidance to realize these states. Possible material candidates and experimental signatures are discussed.
This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological band insulators in one and two dimensions. The aim is to provide a basic understanding of edge states , bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. We use noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the model is introduced first and then its properties are discussed and subsequently generalized. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.
Filling-enforced Dirac semimetals, or those required at specific fillings by the combination of crystalline and time-reversal symmetries, have been proposed and discovered in numerous materials. However, Dirac points in these materials are not genera lly robust against breaking or modifying time-reversal symmetry. We present a new class of two-dimensional Dirac semimetal protected by the combination of crystal symmetries and a special, antiferromagnetic time-reversal symmetry. Systems in this class of magnetic layer groups, while having broken time-reversal symmetry, still respect the operation of time-reversal followed by a half-lattice translation. In contrast to 2D time-reversal-symmetric Dirac semimetal phases, this magnetic Dirac phase is capable of hosting just a single isolated Dirac point at the Fermi level, and that Dirac point can be stabilized solely by symmorphic crystal symmetries. We find that this Dirac point represents a new quantum critical point, and lives at the boundary between Chern insulating, antiferromagnetic topological crystalline insulating, and trivial insulating phases. We present density functional theoretic calculations which demonstrate the presence of this 2D magnetic Dirac semimetallic phase in FeSe monolayers and discuss the implications for engineering quantum phase transitions in these materials.
140 - Kai Zhang , Zhesen Yang , 2021
Skin effect, experimentally discovered in one dimension, describes the physical phenomenon that on an open chain, an extensive number of eigenstates of a non-Hermitian hamiltonian are localized at the end(s) of the chain. Here in two and higher dimen sions, we establish a theorem that the skin effect exists, if and only if periodic-boundary spectrum of the hamiltonian covers a finite area on the complex plane. This theorem establishes the universality of the effect, because the above condition is satisfied in almost every generic non-Hermitian hamiltonian, and, unlike in one dimension, is compatible with all spatial symmetries. We propose two new types of skin effect in two and higher dimensions: the corner-skin effect where all eigenstates are localized at one corner of the system, and the geometry-dependent-skin effect where skin modes disappear for systems of a particular shape, but appear on generic polygons. An immediate corollary of our theorem is that any non-Hermitian system having exceptional points (lines) in two (three) dimensions exhibits skin effect, making this phenomenon accessible to experiments in photonic crystals, Weyl semimetals, and Kondo insulators.
109 - Simon Streib 2020
In condensed matter systems it is necessary to distinguish between the momentum of the constituents of the system and the pseudomomentum of quasiparticles. The same distinction is also valid for angular momentum and pseudoangular momentum. Based on N oethers theorem, we demonstrate that the recently discussed orbital angular momenta of phonons and magnons are pseudoangular momenta. This conceptual difference is important for a proper understanding of the transfer of angular momentum in condensed matter systems, especially in spintronics applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا